論文の概要: The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
- arxiv url: http://arxiv.org/abs/2407.05650v2
- Date: Wed, 04 Dec 2024 11:12:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:06:16.679266
- Title: The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
- Title(参考訳): 協調型ネットワークアーキテクチャ:感覚パターンの表現としての構造化ネットワークの学習
- Authors: Pascal J. Sager, Jan M. Deriu, Benjamin F. Grewe, Thilo Stadelmann, Christoph von der Malsburg,
- Abstract要約: 本稿では、入力パターンを表現するためにネットワーク構造を学習し、ノイズ、変形、アウト・オブ・ディストリビューションデータに頑健に対処するモデルである協調ネットワークアーキテクチャ(CNA)を提案する。
- 参考スコア(独自算出の注目度): 3.9848584845601014
- License:
- Abstract: Nets, cooperative networks of neurons, have been proposed as format for the representation of sensory signals, as physical implementation of the Gestalt phenomenon and as solution to the neural binding problem, while the direct interaction between nets by structure-sensitive matching has been proposed as basis for object-global operations such as object detection. The nets are flexibly composed of overlapping net fragments, which are learned from statistical regularities of sensory input. We here present the cooperative network architecture (CNA), a concrete model that learns such net structure to represent input patterns and deals robustly with noise, deformation, and out-of-distribution data, thus laying the groundwork for a novel neural architecture.
- Abstract(参考訳): ニューロンの協調ネットワークであるネットは、感覚信号の表現形式として、ゲシュタルト現象の物理的実装として、神経結合問題の解として提案され、一方、構造に敏感なマッチングによるネット間の直接相互作用は、オブジェクト検出などのオブジェクト・グローバル操作の基盤として提案されている。
ネットは重なり合うネット断片から柔軟に構成され、感覚入力の統計的規則性から学習される。
本稿では、入力パターンを表現するためにそのようなネット構造を学習し、ノイズ、変形、および分布外データに頑健に対処する具体的なモデルである協調ネットワークアーキテクチャ(CNA)について述べる。
関連論文リスト
- Continually Learning Structured Visual Representations via Network Refinement with Rerelation [15.376349115976534]
現在の機械学習パラダイムは、ニューラルネットワークのような連続的な表現に依存しており、パラメータを近似結果に反復的に調整する。
構造化された連続的な方法で視覚空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2025-02-19T18:18:27Z) - Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Identifying Sub-networks in Neural Networks via Functionally Similar Representations [41.028797971427124]
我々は、異なるサブネットワークの存在を調査し、ネットワークの理解を自動化するための一歩を踏み出した。
具体的には、ニューラルネットワーク内の機能的に類似した表現の概念に基づく、新しい自動化されたタスク非依存のアプローチについて検討する。
提案手法は,人間と計算コストを最小限に抑えたニューラルネットワークの動作に関する有意義な洞察を提供する。
論文 参考訳(メタデータ) (2024-10-21T20:19:00Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Learning Interpretable Models for Coupled Networks Under Domain
Constraints [8.308385006727702]
脳ネットワークの構造的エッジと機能的エッジの相互作用に着目して,結合ネットワークの概念を検討する。
相互作用を推定しながらノイズ項にハードネットワークの制約を課す新しい定式化を提案する。
ヒトコネクトームプロジェクトから得られたマルチシェル拡散およびタスク誘発fMRIデータセットの手法を検証する。
論文 参考訳(メタデータ) (2021-04-19T06:23:31Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning low-rank latent mesoscale structures in networks [1.1470070927586016]
ネットワークにおける低ランクメソスケール構造を記述するための新しい手法を提案する。
いくつかの合成ネットワークモデルと経験的友情、協調、タンパク質-タンパク質相互作用(PPI)ネットワークを使用します。
破損したネットワークから直接学習する潜在モチーフのみを用いて、破損したネットワークを認知する方法を示す。
論文 参考訳(メタデータ) (2021-02-13T18:54:49Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
ニューラルネットワークは、勾配に基づくトレーニングの過程で、そのサイズとトポロジの両方を学習できるフレキシブルなセットアップを導入します。
結果として得られるネットワークは、特定の学習タスクとデータセットに合わせたグラフの構造を持つ。
論文 参考訳(メタデータ) (2020-06-22T12:46:44Z) - Investigating the Compositional Structure Of Deep Neural Networks [1.8899300124593645]
本稿では,一方向線形活性化関数の構成構造に基づく新しい理論的枠組みを提案する。
予測ラベルと予測に使用する特定の(線形)変換の両方に関して、入力データのインスタンスを特徴付けることができる。
MNISTデータセットの予備テストでは、ニューラルネットワークの内部表現における類似性に関して、入力インスタンスをグループ化することが可能である。
論文 参考訳(メタデータ) (2020-02-17T14:16:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。