論文の概要: Continually Learning Structured Visual Representations via Network Refinement with Rerelation
- arxiv url: http://arxiv.org/abs/2502.13935v1
- Date: Wed, 19 Feb 2025 18:18:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 14:01:59.956581
- Title: Continually Learning Structured Visual Representations via Network Refinement with Rerelation
- Title(参考訳): リレーショナル・ネットワーク・リファインメントによる構造的視覚表現の連続学習
- Authors: Zeki Doruk Erden, Boi Faltings,
- Abstract要約: 現在の機械学習パラダイムは、ニューラルネットワークのような連続的な表現に依存しており、パラメータを近似結果に反復的に調整する。
構造化された連続的な方法で視覚空間を学習する手法を提案する。
- 参考スコア(独自算出の注目度): 15.376349115976534
- License:
- Abstract: Current machine learning paradigm relies on continuous representations like neural networks, which iteratively adjust parameters to approximate outcomes rather than directly learning the structure of problem. This spreads information across the network, causing issues like information loss and incomprehensibility Building on prior work in environment dynamics modeling, we propose a method that learns visual space in a structured, continual manner. Our approach refines networks to capture the core structure of objects while representing significant subvariants in structure efficiently. We demonstrate this with 2D shape detection, showing incremental learning on MNIST without overwriting knowledge and creating compact, comprehensible representations. These results offer a promising step toward a transparent, continually learning alternative to traditional neural networks for visual processing.
- Abstract(参考訳): 現在の機械学習パラダイムは、ニューラルネットワークのような連続的な表現に依存しており、問題の構造を直接学習するのではなく、パラメータを近似結果に反復的に調整する。
これにより、ネットワーク全体に情報を広げ、情報損失や理解不能などの問題を引き起こす。環境力学モデリングにおける先行作業に基づいて、構造化された連続的な方法で視覚空間を学習する手法を提案する。
提案手法では,オブジェクトのコア構造を効率よく表現しながら,ネットワークを改良し,オブジェクトのコア構造を捉える。
我々はこれを2次元形状検出で示し、知識を上書きすることなくMNISTで漸進的な学習を示し、コンパクトで理解しやすい表現を作り出す。
これらの結果は、視覚処理のための従来のニューラルネットワークに代わる、透明で継続的な学習に向けた、有望なステップを提供する。
関連論文リスト
- The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns [3.9848584845601014]
本稿では、入力パターンを表現するためにネットワーク構造を学習し、ノイズ、変形、アウト・オブ・ディストリビューションデータに頑健に対処するモデルである協調ネットワークアーキテクチャ(CNA)を提案する。
論文 参考訳(メタデータ) (2024-07-08T06:22:10Z) - Improving In-Context Learning in Diffusion Models with Visual
Context-Modulated Prompts [83.03471704115786]
本研究では,改良型プロンプト拡散(iPromptDiff)を紹介する。
iPromptDiffは、視覚コンテキストを埋め込みベクトルに変換するエンドツーエンドのトレーニングされた視覚エンコーダを統合する。
拡散に基づく視覚基盤モデルにおいて,この視覚的文脈変調テキストガイダンスと標準制御ネット構造を組み込んだ場合,多種多様な学習課題における多目的性と堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2023-12-03T14:15:52Z) - Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations [0.5249805590164901]
ガラスの静的構造の堅牢な表現を学習するグラフニューラルネットワークを構築する。
この制約は, パラメータ数に匹敵する, あるいは減少する予測能力を大幅に向上させることを示す。
ディープネットワークを維持しながら、我々のモデルは他のGNNと比較して解釈可能性を改善した。
論文 参考訳(メタデータ) (2022-11-06T22:05:27Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
クラスアクティベーションマッピングに基づくShap-CAMと呼ばれる新しい視覚的説明法を開発した。
我々は,Shap-CAMが意思決定プロセスの解釈において,より良い視覚的性能と公平性を実現することを実証した。
論文 参考訳(メタデータ) (2022-08-07T00:59:23Z) - The Neural Race Reduction: Dynamics of Abstraction in Gated Networks [12.130628846129973]
本稿では,情報フローの経路が学習力学に与える影響をスキーマ化するGated Deep Linear Networkフレームワークを紹介する。
正確な還元と、特定の場合において、学習のダイナミクスに対する正確な解が導出されます。
我々の研究は、ニューラルネットワークと学習に関する一般的な仮説を生み出し、より複雑なアーキテクチャの設計を理解するための数学的アプローチを提供する。
論文 参考訳(メタデータ) (2022-07-21T12:01:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Network representation learning systematic review: ancestors and current
development state [1.0312968200748116]
本稿では,ネットワーク埋め込みとして知られるネットワーク表現学習を誕生から現在までの体系的に調査する。
また,ネットワーク表現学習の理解に必要な基本概念の形式的定義も提供する。
最も一般的に使用される下流タスクは、埋め込みの評価、評価メトリクス、一般的なデータセットである。
論文 参考訳(メタデータ) (2021-09-14T14:44:44Z) - WeightScale: Interpreting Weight Change in Neural Networks [0.0]
本稿では,ニューラルネットワークの相対重み変化を層ごとの相対重み変化の測定によって解釈する手法を提案する。
我々はこの手法を用いて、様々な最先端ネットワークにおける視覚タスクの文脈における学習を調査する。
論文 参考訳(メタデータ) (2021-07-07T21:18:38Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。