Chiral dynamics with giant systems
- URL: http://arxiv.org/abs/2407.05672v1
- Date: Mon, 8 Jul 2024 07:12:39 GMT
- Title: Chiral dynamics with giant systems
- Authors: Yue Chang,
- Abstract summary: We explore the chiral dynamics in a parity-time-symmetric system consisting of a giant Kerr cavity nonlocally coupled to a one-dimensional waveguide.
By tuning the phase difference between the two coupling points to match the propagation phase at the driving frequency, chiral cavity-waveguide interactions are achieved.
Non-statistical photons can be produced even in the strong dissipation regime due to the interference between reflected and transmitted photons propagating between the coupling points.
- Score: 0.9959450735277456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the chiral dynamics in a parity-time-symmetric system consisting of a giant Kerr cavity nonlocally coupled to a one-dimensional waveguide. By tuning the phase difference between the two coupling points to match the propagation phase at the driving frequency, chiral cavity-waveguide interactions are achieved, enabling the deterministic generation of photons with nontrivial statistics only for a single incident direction. This nontrivial-statistical photons can be produced even in the strong dissipation regime due to the interference between reflected and transmitted photons propagating between the coupling points. Our investigation encompasses a broad range of distances between the coupling points, incorporating non-Markovian effects. Notably, at a phase difference of $\pi/2$, the system's dynamics become exactly Markovian, while the output field retains non-Markovian characteristics. Under these conditions, we analyze nonreciprocal dissipative phase transitions driven by a strong external field and elucidate the influence of the non-Markovian effect. Our results offer valuable insights for the advancement of nonreciprocal photon devices and deterministic photon generations, providing a deeper understanding of dissipative phase transitions.
Related papers
- Nonlinear chiral quantum optics with giant-emitter pairs [9.045697677452061]
We propose a setup which combines giant emitters (coupling to light at multiple points separated by wavelength distances) with nonlinear quantum optics and its correlated photons.
We show that the proposed setup can provide directional quantum many-body resources, and can be configured as a building block for a chiral quantum network with correlated flying qubits''
Our findings point toward a rich landscape of tailoring multiphoton propagation and correlation properties by exploiting interference effects of giant emitters coupling to nonlinear photonic baths.
arXiv Detail & Related papers (2024-04-15T14:26:25Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Nonreciprocal waveguide-QED for spinning cavities with multiple coupling
points [6.218498009194956]
Nonreciprocal photon transmissions occur in the cavities-waveguide system.
Our proposal provides a novel way to achieve quantum nonreciprocal devices.
arXiv Detail & Related papers (2022-03-24T08:49:03Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Distinguishability and "which pathway" information in multidimensional
interferometric spectroscopy with a single entangled photon-pair [0.0]
Photon exchange-phase and degree of distinguishability have not been widely utilized in quantum-enhanced applications.
We show that even at low degree entanglement, when a two-photon wave-function is coupled to matter, it is encoded with a reliable "which pathway?" information.
We find that quantum-light interferometry facilitates utterly different set of time-delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave-packet.
arXiv Detail & Related papers (2021-07-12T07:19:58Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Single-photon nonreciprocal excitation transfer with non-Markovian
retarded effects [5.705932195226406]
We study the nonreciprocal excitation transfer between emitters coupled with a common waveguide.
We propose a giant-atom trimer which supports both nonreciprocal transfer (directional circulation) of the excitation and greatly lengthened lifetime.
arXiv Detail & Related papers (2021-02-06T02:58:53Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Dissipative Josephson effect in coupled nanolasers [0.0]
We study a setup where dissipative interactions do amplify a photonic Josephson current.
We show that the Josephson photocurrent can be used to measure optical phase differences.
In the quantum limit, the accuracy of the two nanolaser interferometer grows with the square of the photon number.
arXiv Detail & Related papers (2020-11-06T10:21:33Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.