Single-photon nonreciprocal excitation transfer with non-Markovian
retarded effects
- URL: http://arxiv.org/abs/2102.03488v2
- Date: Wed, 14 Jul 2021 11:12:05 GMT
- Title: Single-photon nonreciprocal excitation transfer with non-Markovian
retarded effects
- Authors: Lei Du, Mao-Rui Cai, Jin-Hui Wu, Zhihai Wang, and Yong Li
- Abstract summary: We study the nonreciprocal excitation transfer between emitters coupled with a common waveguide.
We propose a giant-atom trimer which supports both nonreciprocal transfer (directional circulation) of the excitation and greatly lengthened lifetime.
- Score: 5.705932195226406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study at the single-photon level the nonreciprocal excitation transfer
between emitters coupled with a common waveguide. Non-Markovian retarded
effects are taken into account due to the large separation distance between
different emitter-waveguide coupling ports. It is shown that the excitation
transfer between the emitters of a small-atom dimer can be obviously
nonreciprocal by introducing between them a coherent coupling channel with
nontrivial coupling phase. We prove that for dimer models the nonreciprocity
cannot coexist with the decoherence-free giant-atom structure although the
latter markedly lengthens the lifetime of the emitters. In view of this, we
further propose a giant-atom trimer which supports both nonreciprocal transfer
(directional circulation) of the excitation and greatly lengthened lifetime.
Such a trimer model also exhibits incommensurate emitter-waveguide entanglement
for different initial states in which case the excitation transfer is however
reciprocal. We believe that the proposals in this paper are of potential
applications in large-scale quantum networks and quantum information
processing.
Related papers
- Chiral dynamics with giant systems [0.9959450735277456]
We explore the chiral dynamics in a parity-time-symmetric system consisting of a giant Kerr cavity nonlocally coupled to a one-dimensional waveguide.
By tuning the phase difference between the two coupling points to match the propagation phase at the driving frequency, chiral cavity-waveguide interactions are achieved.
Non-statistical photons can be produced even in the strong dissipation regime due to the interference between reflected and transmitted photons propagating between the coupling points.
arXiv Detail & Related papers (2024-07-08T07:12:39Z) - Nonlinear chiral quantum optics with giant-emitter pairs [9.045697677452061]
We propose a setup which combines giant emitters (coupling to light at multiple points separated by wavelength distances) with nonlinear quantum optics and its correlated photons.
We show that the proposed setup can provide directional quantum many-body resources, and can be configured as a building block for a chiral quantum network with correlated flying qubits''
Our findings point toward a rich landscape of tailoring multiphoton propagation and correlation properties by exploiting interference effects of giant emitters coupling to nonlinear photonic baths.
arXiv Detail & Related papers (2024-04-15T14:26:25Z) - Nonreciprocal Amplification Transition in a Driven-Dissipative Quantum
Network [3.32634590232003]
We study the transport properties of a driven-dissipative quantum network.
Multiple bosonic cavities are coupled through a nonreciprocal bus with unidirectional transmission.
arXiv Detail & Related papers (2022-07-14T13:07:27Z) - Nonreciprocal waveguide-QED for spinning cavities with multiple coupling
points [6.218498009194956]
Nonreciprocal photon transmissions occur in the cavities-waveguide system.
Our proposal provides a novel way to achieve quantum nonreciprocal devices.
arXiv Detail & Related papers (2022-03-24T08:49:03Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Chirality-driven delocalization in disordered waveguide-coupled quantum
arrays [0.0]
We study the competition between directional asymmetric coupling and disorder in a one-dimensional array of quantum emitters chirally coupled through a waveguide mode.
Our findings could be important for the rapidly developing field of the waveguide quantum electrodynamics.
arXiv Detail & Related papers (2020-12-12T18:40:44Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.