論文の概要: InverseCoder: Self-improving Instruction-Tuned Code LLMs with Inverse-Instruct
- arxiv url: http://arxiv.org/abs/2407.05700v2
- Date: Mon, 16 Dec 2024 03:08:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:53:30.870272
- Title: InverseCoder: Self-improving Instruction-Tuned Code LLMs with Inverse-Instruct
- Title(参考訳): InverseCoder: 逆命令付き自己改善型インストラクション付きコードLLM
- Authors: Yutong Wu, Di Huang, Wenxuan Shi, Wei Wang, Lingzhe Gao, Shihao Liu, Ziyuan Nan, Kaizhao Yuan, Rui Zhang, Xishan Zhang, Zidong Du, Qi Guo, Yewen Pu, Dawei Yin, Xing Hu, Yunji Chen,
- Abstract要約: 本稿では、微調整されたオープンソースモデルを用いて、追加データを生成して命令調整データセットを拡張できるかどうかを考察する。
Inverse-Instructは、微調整 LLM を用いて、独自のトレーニングデータセットからコード応答の追加命令を生成するデータ拡張手法である。
- 参考スコア(独自算出の注目度): 43.7550233177368
- License:
- Abstract: Recent advancements in open-source code large language models (LLMs) have been driven by fine-tuning on the data generated from powerful closed-source LLMs, which are expensive to obtain. This paper explores whether it is possible to use a fine-tuned open-source model to generate additional data to augment its instruction-tuning dataset. We make two observations: (1) A code snippet can serve as the response to different instructions. (2) Instruction-tuned code LLMs perform better at translating code into instructions than the reverse. Based on these observations, we propose Inverse-Instruct, a data augmentation technique that uses a fine-tuned LLM to generate additional instructions of code responses from its own training dataset. The additional instruction-response pairs are added to the original dataset, and a stronger code LLM can be obtained by fine-tuning on the augmented dataset. We empirically validate Inverse-Instruct on a range of open-source code models (e.g. CodeLlama-Python and DeepSeek-Coder) and benchmarks (e.g., HumanEval(+), MBPP(+), DS-1000 and MultiPL-E), showing it consistently improves the base models.
- Abstract(参考訳): オープンソースコード大言語モデル(LLM)の最近の進歩は、強力なクローズドソース LLM から生成されたデータを微調整することで実現されている。
本稿では、微調整されたオープンソースモデルを用いて、追加データを生成して命令調整データセットを拡張できるかどうかを考察する。
1) コードスニペットは異なる命令に対する応答として機能する。
2) 命令調整符号 LLM は逆よりも命令へのコード変換が優れている。
そこで本研究では,微調整LDMを用いたデータ拡張手法であるInverse-Instructを提案する。
元のデータセットに追加の命令応答ペアを追加し、拡張データセットを微調整することで、より強力なコードLLMを得ることができる。
Inverse-Instructは、オープンソースのコードモデル(CodeLlama-PythonやDeepSeek-Coderなど)とベンチマーク(例えば、HumanEval(+), MBPP(+), DS-1000, MultiPL-Eなど)で実証的に検証し、ベースモデルを一貫して改善していることを示す。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - SelfCodeAlign: Self-Alignment for Code Generation [15.23960029671979]
SelfCodeAlignは、自己整合型コード言語モデル(LLM)のための、初めて完全に透明で許容可能なパイプラインである
まず、高品質なシードスニペットから多様なコーディング概念を抽出し、新しいタスクを生成する。
次に、タスク毎に複数のレスポンスをサンプリングし、それぞれがテストケースとペアリングし、サンドボックス環境で検証する。
このデータセットの微調整は、HumanEval+で67.1パス@1を達成するモデルにつながります。
論文 参考訳(メタデータ) (2024-10-31T17:55:13Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - Magicoder: Empowering Code Generation with OSS-Instruct [14.414411313794911]
Magicoderは、コードのためのLarge Language Models(LLM)シリーズの完全なオープンソース(コード、重み、データ)を紹介します。
MagicoderモデルはOSS-Instructを使って75Kの合成命令データに基づいて訓練される。
MagicoderとMagicoderSはどちらも、幅広いコーディングベンチマークにおいて、類似またはそれ以上の大きさの最先端のコードモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2023-12-04T18:50:35Z) - InstructCoder: Instruction Tuning Large Language Models for Code Editing [26.160498475809266]
ユーザインストラクションに基づいたコード編集にLLM(Large Language Models)を用いる方法について検討する。
InstructCoderは、汎用コード編集にLLMを適用するために設計された最初の命令チューニングデータセットである。
InstructCoderで微調整されたオープンソースのLLMは、コード編集の精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-10-31T10:15:35Z) - Tuna: Instruction Tuning using Feedback from Large Language Models [74.04950416204551]
本稿では,新しいテキスト確率的ランキングとテキストコンテクスチュアルランキングを用いた命令調整型大規模言語モデルの微調整を提案する。
確率的ランク付けにより、教師のLCMから高品質で低品質なレスポンスの相対的なランク付けを継承することができる。
一方、文脈的ランキングを学習することで、より強いLLMの文脈的理解能力を用いて、モデルが独自の応答分布を洗練できる。
論文 参考訳(メタデータ) (2023-10-20T09:55:06Z) - WizardCoder: Empowering Code Large Language Models with Evol-Instruct [67.24653703564492]
WezardCoderは、複雑な命令の微調整でコードLLMをパワーアップする。
私たちのモデルは、他のすべてのオープンソースコードLLMをかなり上回ります。
論文 参考訳(メタデータ) (2023-06-14T15:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。