論文の概要: 3D Vessel Graph Generation Using Denoising Diffusion
- arxiv url: http://arxiv.org/abs/2407.05842v1
- Date: Mon, 8 Jul 2024 11:39:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:00:10.794322
- Title: 3D Vessel Graph Generation Using Denoising Diffusion
- Title(参考訳): Denoising Diffusion を用いた3次元血管グラフ生成
- Authors: Chinmay Prabhakar, Suprosanna Shit, Fabio Musio, Kaiyuan Yang, Tamaz Amiranashvili, Johannes C. Paetzold, Hongwei Bran Li, Bjoern Menze,
- Abstract要約: 血管ネットワークは3Dグラフとして表現され、疾患のバイオマーカーの予測、血流のシミュレート、合成画像生成の助けとなる。
船体木の生成を目的とした従来手法は, 主に自己回帰型であり, キャピラリーなどの周期を持つ船体グラフには適用できなかった。
本稿では,3次元血管グラフ生成におけるテキストデノナイズ拡散モデルの最初の応用について紹介する。
- 参考スコア(独自算出の注目度): 4.100929120985704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blood vessel networks, represented as 3D graphs, help predict disease biomarkers, simulate blood flow, and aid in synthetic image generation, relevant in both clinical and pre-clinical settings. However, generating realistic vessel graphs that correspond to an anatomy of interest is challenging. Previous methods aimed at generating vessel trees mostly in an autoregressive style and could not be applied to vessel graphs with cycles such as capillaries or specific anatomical structures such as the Circle of Willis. Addressing this gap, we introduce the first application of \textit{denoising diffusion models} in 3D vessel graph generation. Our contributions include a novel, two-stage generation method that sequentially denoises node coordinates and edges. We experiment with two real-world vessel datasets, consisting of microscopic capillaries and major cerebral vessels, and demonstrate the generalizability of our method for producing diverse, novel, and anatomically plausible vessel graphs.
- Abstract(参考訳): 血管ネットワークは3Dグラフとして表現され、疾患のバイオマーカーを予測し、血流をシミュレートし、臨床と臨床の両方に関係のある合成画像生成を助ける。
しかし、関心の解剖に対応する現実的な容器グラフを生成することは困難である。
それまでの方法は、主に自己回帰様式で容器木を生成することを目的としており、毛細血管やウィリス環のような特定の解剖学的構造を持つ容器グラフには適用できなかった。
このギャップに対処するため、我々は3次元容器グラフ生成における \textit{denoising diffusion model} の最初の応用を紹介した。
我々の貢献には、ノード座標とエッジを逐次分解する新しい2段階生成手法が含まれる。
われわれは, 顕微鏡的キャピラリーと大脳血管からなる実世界の2つの血管データセットを実験し, 多様な, 新規で, 解剖学的に妥当な血管グラフを作成する方法の一般化性を実証した。
関連論文リスト
- Deep Learning-based 3D Coronary Tree Reconstruction from Two 2D Non-simultaneous X-ray Angiography Projections [1.9929038355503754]
心臓血管疾患(CVD)は、世界中で最も多い死因である。
CVDの診断において,侵襲的X線冠動脈造影(ICA)は最も重要な画像モダリティの1つである。
ICAは一般的に2Dプロジェクションしか取得しないため、冠動脈の3D形状は解釈が困難である。
本研究では,非定常投射間における非剛性心・呼吸運動の補正のための新しい深層学習パイプラインを提案する。
論文 参考訳(メタデータ) (2024-07-19T18:18:17Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
グラフベータ拡散(英: Graph Beta Diffusion、GBD)は、様々なグラフ構造を捉えるのに有効な拡散ベースの生成モデルである。
我々は,臨界グラフ構造の生成を安定化させることにより,生成したグラフの現実性を高める変調手法を開発した。
論文 参考訳(メタデータ) (2024-06-13T17:42:57Z) - Leveraging Graph Diffusion Models for Network Refinement Tasks [72.54590628084178]
本稿では,グラフ拡散に基づく新しいグラフ生成フレームワークSGDMを提案する。
我々のフレームワークはグラフ拡散モデルのスケーラビリティと忠実度を向上するだけでなく、逆プロセスを利用して新しい条件付き生成タスクを実行する。
論文 参考訳(メタデータ) (2023-11-29T18:02:29Z) - 3D Coronary Vessel Reconstruction from Bi-Plane Angiography using Graph
Convolutional Networks [1.8244763402770727]
3DAngioNetは、2つのビューから2D XCA画像を使用して高速な3Dコンテナメッシュ再構築を可能にする、新しいディープラーニング(DL)システムである。
提案手法は,効率的なB3-UNetセグメンテーションネットワークとプロジェクションジオメトリを用いて粗いメッシュテンプレートを学習し,グラフ畳み込みネットワークを用いて変形する。
論文 参考訳(メタデータ) (2023-02-28T17:46:25Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Fully Automated Tree Topology Estimation and Artery-Vein Classification [0.0]
網膜血管トポロジー(網膜血管トポロジー)を抽出するための完全自動的手法,すなわち,異なる血管が相互にどのように結びついているかを示す。
我々は,網膜動脈-静脈分類における最先端の結果を得るために,抽出法の有用性を検証した。
論文 参考訳(メタデータ) (2022-02-04T20:40:01Z) - Representing Videos as Discriminative Sub-graphs for Action Recognition [165.54738402505194]
ビデオ中の各アクションの識別パターンを表現およびエンコードするためのサブグラフの新たな設計を提案する。
時空グラフとクラスタを各スケールでコンパクトなサブグラフに新たに構築するMUlti-scale Sub-Earn Ling (MUSLE) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-11T16:15:25Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning
and Neuroscience (VesselGraph) [3.846749674808336]
本稿では,特定の画像プロトコルに基づく脳血管グラフの拡張可能なデータセットを提案する。
我々は,血管予測と血管分類の生物学的タスクについて,最先端のグラフ学習アルゴリズムを多数ベンチマークした。
我々の研究は、神経科学の分野におけるグラフ学習研究の進展への道を開いた。
論文 参考訳(メタデータ) (2021-08-30T13:40:48Z) - Deep Open Snake Tracker for Vessel Tracing [32.97987423431042]
中心線と半径を持つ3次元医用画像の血管構造をモデル化した血管トレースは、血管の健康に有用な情報を提供することができる。
既存のアルゴリズムは開発されているが、不完全または不正確な容器追跡のような永続的な問題もある。
本稿では3次元画像中の容器をトレースする深層学習に基づく開曲線アクティブな輪郭モデル(DOST)を提案する。
論文 参考訳(メタデータ) (2021-07-19T17:59:31Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
解剖学的顔と医学的ランドマーク検出のための新しいトポロジ適応深層グラフ学習手法を提案する。
提案手法は局所像特徴と大域形状特徴の両方を利用するグラフ信号を構成する。
3つの公開顔画像データセット(WFLW、300W、COFW-68)と3つの現実世界のX線医学データセット(ケパロメトリ、ハンド、ペルビス)で実験を行った。
論文 参考訳(メタデータ) (2020-04-17T11:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。