Circuit Partitioning and Transmission Cost Optimization in Distributed Quantum Computing
- URL: http://arxiv.org/abs/2407.05953v2
- Date: Mon, 23 Sep 2024 12:56:10 GMT
- Title: Circuit Partitioning and Transmission Cost Optimization in Distributed Quantum Computing
- Authors: Xinyu Chen, Zilu Chen, Xueyun Cheng, Zhijin Guan,
- Abstract summary: This paper focuses on the issue of excessive communication complexity in distributed quantum computing.
A circuit partitioning method based on the QUBO model is proposed, coupled with the lookahead method for transmission cost optimization.
- Score: 10.192933940653713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the limitations on the number of qubits in current NISQ devices, the implementation of large-scale quantum algorithms on such devices is challenging, prompting research into distributed quantum computing. This paper focuses on the issue of excessive communication complexity in distributed quantum computing oriented towards quantum circuits. To reduce the number of quantum state transmissions, i.e., the transmission cost, in distributed quantum circuits, a circuit partitioning method based on the QUBO model is proposed, coupled with the lookahead method for transmission cost optimization. Initially, the problem of distributed quantum circuit partitioning is transformed into a graph minimum cut problem. The QUBO model, which can be accelerated by quantum algorithms, is introduced to minimize the number of quantum gates between QPUs and the transmission cost. Subsequently, the dynamic lookahead strategy for the selection of transmission qubits is proposed to optimize the transmission cost in distributed quantum circuits. Finally, through numerical simulations, the impact of different circuit partitioning indicators on the transmission cost is explored, and the proposed method is evaluated on benchmark circuits. Experimental results demonstrate that the proposed circuit partitioning method has a shorter runtime compared with current circuit partitioning methods. Additionally, the transmission cost optimized by the proposed method is significantly lower than that of current transmission cost optimization methods, achieving noticeable improvements across different numbers of partitions.
Related papers
- Circuit Knitting Faces Exponential Sampling Overhead Scaling Bounded by Entanglement Cost [5.086696108576776]
We show that the sampling overhead of circuit knitting is exponentially lower bounded by the exact entanglement cost of the target bipartite dynamic.
Our work reveals a profound connection between virtual quantum information processing via quasi-probability decomposition and quantum Shannon theory.
arXiv Detail & Related papers (2024-04-04T17:41:13Z) - FragQC: An Efficient Quantum Error Reduction Technique using Quantum
Circuit Fragmentation [4.2754140179767415]
We present it FragQC, a software tool that cuts a quantum circuit into sub-circuits when its error probability exceeds a certain threshold.
We achieve an increase of fidelity by 14.83% compared to direct execution without cutting the circuit, and 8.45% over the state-of-the-art ILP-based method.
arXiv Detail & Related papers (2023-09-30T17:38:31Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Hypergraphic partitioning of quantum circuits for distributed quantum
computing [0.0]
We present a new method for partitioning quantum circuits in a hypergraphic representation, using a partitioning algorithm for this, reducing the number of communication qubits between the partitions.
With this approach, we obtained partial results with a more than 50% reduction in the communication cost generated for the bipartite partitioning against a process done randomly on benchmark circuits.
arXiv Detail & Related papers (2023-01-13T21:12:33Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Optimized Quantum Circuit Partitioning [2.0779403190197843]
We present a method for generating distributed quantum circuits from monolithic quantum circuits.
Our approach can effectively map a quantum circuit into an appropriate number of distributed components.
arXiv Detail & Related papers (2020-05-23T22:35:18Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - A dynamic programming approach for distributing quantum circuits by
bipartite graphs [1.3249509346606656]
Near-term large quantum computers are not able to operate as a single processing unit.
It is required to partition a quantum circuit into smaller parts, and then each part is executed on a small unit.
In this study, a dynamic programming algorithm is proposed to minimize the number of communications in a distributed quantum circuit.
arXiv Detail & Related papers (2020-05-03T11:08:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.