Causality-driven Sequence Segmentation for Enhancing Multiphase Industrial Process Data Analysis and Soft Sensing
- URL: http://arxiv.org/abs/2407.05954v1
- Date: Sun, 30 Jun 2024 10:40:54 GMT
- Title: Causality-driven Sequence Segmentation for Enhancing Multiphase Industrial Process Data Analysis and Soft Sensing
- Authors: Yimeng He, Le Yao, Xinmin Zhang, Xiangyin Kong, Zhihuan Song,
- Abstract summary: This article introduces a causality-driven sequence segmentation model.
It segments the sequence into different phases based on the sudden shifts in causal mechanisms that occur during phase transitions.
A soft sensing model called temporal-causal graph convolutional network (TC-GCN) is trained for each phase.
- Score: 4.420321822469078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamic characteristics of multiphase industrial processes present significant challenges in the field of industrial big data modeling. Traditional soft sensing models frequently neglect the process dynamics and have difficulty in capturing transient phenomena like phase transitions. To address this issue, this article introduces a causality-driven sequence segmentation (CDSS) model. This model first identifies the local dynamic properties of the causal relationships between variables, which are also referred to as causal mechanisms. It then segments the sequence into different phases based on the sudden shifts in causal mechanisms that occur during phase transitions. Additionally, a novel metric, similarity distance, is designed to evaluate the temporal consistency of causal mechanisms, which includes both causal similarity distance and stable similarity distance. The discovered causal relationships in each phase are represented as a temporal causal graph (TCG). Furthermore, a soft sensing model called temporal-causal graph convolutional network (TC-GCN) is trained for each phase, by using the time-extended data and the adjacency matrix of TCG. The numerical examples are utilized to validate the proposed CDSS model, and the segmentation results demonstrate that CDSS has excellent performance on segmenting both stable and unstable multiphase series. Especially, it has higher accuracy in separating non-stationary time series compared to other methods. The effectiveness of the proposed CDSS model and the TC-GCN model is also verified through a penicillin fermentation process. Experimental results indicate that the breakpoints discovered by CDSS align well with the reaction mechanisms and TC-GCN significantly has excellent predictive accuracy.
Related papers
- Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
This paper introduces a novel method that combines Graph Attention Network (GAT) and Long Short-Term Memory (LSTM) networks.
This approach captures both spatial and temporal dependencies within sensor data, improving the accuracy of bearing fault detection.
arXiv Detail & Related papers (2024-10-15T12:55:57Z) - Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
Causal discovery from time-series data aims to capture both intra-slice (contemporaneous) and inter-slice (time-lagged) causality.
We propose a novel gradient-based causal discovery approach STIC, which focuses on textbfShort-textbfTerm textbfInvariance using textbfConvolutional neural networks.
arXiv Detail & Related papers (2024-08-15T08:43:28Z) - Detecting Causality in the Frequency Domain with Cross-Mapping Coherence [0.4218593777811082]
This study introduces the Cross-Mapping Coherence (CMC) method, designed to reveal causal connections in the frequency domain between time series.
We tested the method using simulations of logistic maps, Lorenz systems, Kuramoto oscillators, and the Wilson-Cowan model of the visual cortex.
In conclusion, the capability to determine directed causal influences across different frequency bands allows CMC to provide valuable insights into the dynamics of complex, nonlinear systems.
arXiv Detail & Related papers (2024-07-30T09:43:35Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Causal Inference from Slowly Varying Nonstationary Processes [2.3072402651280517]
Causal inference from observational data hinges on asymmetry between cause and effect from the data generating mechanisms.
We propose a new class of restricted structural causal models, via a time-varying filter and stationary noise, and exploit the asymmetry from nonstationarity for causal identification.
arXiv Detail & Related papers (2024-05-11T04:15:47Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Variational Mode Decomposition-Based Nonstationary Coherent Structure Analysis for Spatiotemporal Data [0.0]
This paper presents a variational mode decomposition (VMD-NCS) analysis that enables the extraction of coherent structures in the case of nonstationary phenomena.
Unlike many conventional modal analysis techniques, the proposed method accounts for the temporal changes in the spatial distribution with time.
arXiv Detail & Related papers (2023-12-19T12:36:39Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
We propose a flexible model that is capable of identifying both state- and time-dependent switching dynamics.
State-dependent switching is enabled by a recurrent state-to-switch connection.
An explicit duration count variable is used to improve the time-dependent switching behavior.
arXiv Detail & Related papers (2021-10-26T17:35:21Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
arXiv Detail & Related papers (2020-02-05T10:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.