論文の概要: Pseudo-triplet Guided Few-shot Composed Image Retrieval
- arxiv url: http://arxiv.org/abs/2407.06001v1
- Date: Mon, 8 Jul 2024 14:53:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 15:20:49.219681
- Title: Pseudo-triplet Guided Few-shot Composed Image Retrieval
- Title(参考訳): Pseudo-triplet Guided Few-shot Composed Image Retrieval
- Authors: Bohan Hou, Haoqiang Lin, Haokun Wen, Meng Liu, Xuemeng Song,
- Abstract要約: Composed Image Retrieval (CIR)は、マルチモーダルクエリに基づいてターゲット画像を取得することを目的とした課題である。
PTG-FSCIRと呼ばれる2段階の擬似三重項誘導方式を提案する。
我々の方式はプラグアンドプレイであり、既存の教師付きCIRモデルと互換性がある。
- 参考スコア(独自算出の注目度): 20.130745490934597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Composed Image Retrieval (CIR) is a challenging task that aims to retrieve the target image based on a multimodal query, i.e., a reference image and its corresponding modification text. While previous supervised or zero-shot learning paradigms all fail to strike a good trade-off between time-consuming annotation cost and retrieval performance, recent researchers introduced the task of few-shot CIR (FS-CIR) and proposed a textual inversion-based network based on pretrained CLIP model to realize it. Despite its promising performance, the approach suffers from two key limitations: insufficient multimodal query composition training and indiscriminative training triplet selection. To address these two limitations, in this work, we propose a novel two-stage pseudo triplet guided few-shot CIR scheme, dubbed PTG-FSCIR. In the first stage, we employ a masked training strategy and advanced image caption generator to construct pseudo triplets from pure image data to enable the model to acquire primary knowledge related to multimodal query composition. In the second stage, based on active learning, we design a pseudo modification text-based query-target distance metric to evaluate the challenging score for each unlabeled sample. Meanwhile, we propose a robust top range-based random sampling strategy according to the 3-$\sigma$ rule in statistics, to sample the challenging samples for fine-tuning the pretrained model. Notably, our scheme is plug-and-play and compatible with any existing supervised CIR models. We tested our scheme across three backbones on three public datasets (i.e., FashionIQ, CIRR, and Birds-to-Words), achieving maximum improvements of 26.4%, 25.5% and 21.6% respectively, demonstrating our scheme's effectiveness.
- Abstract(参考訳): Composed Image Retrieval (CIR) は、マルチモーダルクエリ(参照画像とその対応する修正テキスト)に基づいてターゲット画像を取得することを目的とした課題である。
従来の教師付き学習パラダイムやゼロショット学習パラダイムはすべて、時間的アノテーションコストと検索性能のトレードオフを達成できなかったが、最近の研究者は、数ショットCIR(FS-CIR)のタスクを導入し、事前訓練されたCLIPモデルに基づくテキストインバージョンベースのネットワークを提案して実現した。
その有望な性能にもかかわらず、このアプローチには2つの重要な制限がある。
本稿では,この2つの制約に対処するため,PTG-FSCIRと呼ばれる2段階の擬似三重項誘導方式を提案する。
第1段階では、マスク付きトレーニング戦略と高度な画像キャプション生成を用いて、純画像データから擬似三脚を構築することにより、モデルがマルチモーダルクエリ合成に関する一次知識を取得できるようにする。
第2段階では、アクティブな学習に基づいて、擬似修正テキストベースのクエリターゲット距離メートル法を設計し、ラベルなしサンプル毎の挑戦的なスコアを評価する。
一方,統計学における3$\sigma$ルールに従って,頑健なトップレンジに基づくランダムサンプリング戦略を提案し,事前学習したモデルを微調整するための挑戦的なサンプルをサンプリングする。
特に、我々の方式はプラグアンドプレイであり、既存の教師付きCIRモデルと互換性がある。
提案手法を3つの公開データセット(FashionIQ, CIRR, Birds-to-Words)で検証し,それぞれ26.4%,25.5%,21.6%の最大改善を実現した。
関連論文リスト
- Unified Speech Recognition: A Single Model for Auditory, Visual, and Audiovisual Inputs [73.74375912785689]
本稿では,音声認識システムのための統合学習戦略を提案する。
3つのタスクの1つのモデルをトレーニングすることで、VSRとAVSRの性能が向上することを示す。
また,非ラベル標本をより効果的に活用するために,強欲な擬似ラベリング手法を導入する。
論文 参考訳(メタデータ) (2024-11-04T16:46:53Z) - MoTaDual: Modality-Task Dual Alignment for Enhanced Zero-shot Composed Image Retrieval [20.612534837883892]
Composed Image Retrieval (CIR) は、ターゲット画像の検索にバイモーダル(image+text)クエリを利用する、難しい視覚言語タスクである。
本稿では,両者の相違に対処するための2段階の枠組みを提案する。
MoTaDualは、トレーニング時間と計算コストを低く保ちながら、4つの広く使用されているZS-CIRベンチマークで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-10-31T08:49:05Z) - Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging [8.819370643243012]
Coded Aperture Snapshot Spectral Imaging (CASSI)は3次元マルチスペクトル画像(MSI)を撮影するための重要な技術である
現在の最先端の手法は、主にエンドツーエンドであり、高周波の詳細を再構築する際の制限に直面している。
本稿では,Snapshot Compressive Imagingのための自己教師型適応フレームワークにおいて,新しい1段階拡散確率モデルを提案する。
論文 参考訳(メタデータ) (2024-09-11T17:02:10Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - Towards Self-Supervised FG-SBIR with Unified Sample Feature Alignment and Multi-Scale Token Recycling [11.129453244307369]
FG-SBIRは、埋め込み空間におけるスケッチと対応する画像の距離を最小化することを目的としている。
両領域間のギャップを狭める効果的なアプローチを提案する。
主に、イントラサンプルとインターサンプルの両方を共有する統一的な相互情報共有を促進する。
論文 参考訳(メタデータ) (2024-06-17T13:49:12Z) - Visual Delta Generator with Large Multi-modal Models for Semi-supervised Composed Image Retrieval [50.72924579220149]
Composed Image Retrieval (CIR)は、提供されるテキスト修正に基づいて、クエリに似たイメージを取得するタスクである。
現在の技術は、基準画像、テキスト、ターゲット画像のラベル付き三重項を用いたCIRモデルの教師あり学習に依存している。
本稿では,参照とその関連対象画像を補助データとして検索する半教師付きCIR手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T21:00:22Z) - Co-guiding for Multi-intent Spoken Language Understanding [53.30511968323911]
本稿では,2つのタスク間の相互指導を実現するための2段階のフレームワークを実装した,コガイドネットと呼ばれる新しいモデルを提案する。
第1段階では,単一タスクによる教師付きコントラスト学習を提案し,第2段階ではコガイドによる教師付きコントラスト学習を提案する。
マルチインテリジェントSLU実験の結果,我々のモデルは既存のモデルよりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-22T08:06:22Z) - MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based
Self-Supervised Pre-Training [58.07391711548269]
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training
論文 参考訳(メタデータ) (2023-03-23T17:59:02Z) - Pic2Word: Mapping Pictures to Words for Zero-shot Composed Image
Retrieval [84.11127588805138]
Composed Image Retrieval (CIR)は、クエリイメージとテキストを組み合わせて、対象とするターゲットを記述する。
既存の方法は、クエリ画像、テキスト仕様、ターゲット画像からなるラベル付き三重項を用いたCIRモデルの教師あり学習に依存している。
我々は,ラベル付き三重項学習を必要とせずにCIRモデルを構築することを目的として,Zero-Shot Composed Image Retrieval (ZS-CIR)を提案する。
論文 参考訳(メタデータ) (2023-02-06T19:40:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。