論文の概要: Semantic Communication Networks Empowered Artificial Intelligence of Things
- arxiv url: http://arxiv.org/abs/2407.06082v1
- Date: Thu, 4 Jul 2024 14:39:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 15:01:12.969454
- Title: Semantic Communication Networks Empowered Artificial Intelligence of Things
- Title(参考訳): 物の人工知能を活用したセマンティック通信ネットワーク
- Authors: Yuntao Wang,
- Abstract要約: 本稿では,セマンティック通信システムにおけるセキュリティとプライバシの脅威を包括的に調査する。
この急成長する分野において、さらなる調査を保証している重要なオープンな問題を特定します。
- 参考スコア(独自算出の注目度): 2.590720801978138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic communication aims to facilitate purposeful information exchange among diverse intelligent entities, including humans, machines, and organisms. It emphasizes precise semantic transmission over data fidelity, striving for meaningful expression while optimizing communication resources for efficient information transfer. Nevertheless, extant semantic communication systems face security, privacy, and trust challenges in integrating AI technologies for intelligent communication applications. This paper presents a comprehensive survey of security and privacy threats across various layers of semantic communication systems and discusses state-of-the-art countermeasures within both academic and industry contexts. Finally, we identify critical open issues in this burgeoning field warranting further investigation.
- Abstract(参考訳): セマンティックコミュニケーションは、人間、機械、生物を含む多様な知的な実体間の目的ある情報交換を促進することを目的としている。
それは、効率的な情報伝達のために通信資源を最適化しながら、意味のある表現を目指して、データの忠実さを正確に意味伝達することを強調する。
それでも、既存のセマンティックコミュニケーションシステムは、インテリジェント通信アプリケーションにAI技術を統合する際のセキュリティ、プライバシ、信頼の課題に直面している。
本稿では,セマンティックコミュニケーションシステムにおけるセキュリティとプライバシの脅威を包括的に調査し,学術的・産業的両面での最先端の対策について考察する。
最後に、この急成長する分野における重要なオープンな問題を特定し、さらなる調査を保証します。
関連論文リスト
- Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Pragmatic Goal-Oriented Communications under Semantic-Effectiveness Channel Errors [3.266331042379877]
近日中のAI支援6Gネットワークでは、セマンティック、プラグマティック、ゴール指向のコミュニケーション戦略の統合が必須となる。
本稿では,意味的および有効性の両レベルでの言語ミスマッチから生じる誤りを数学的にモデル化する手法を提案する。
本稿では,言語ミスマッチを補うメカニズムが提案される可能性を示し,ノイズの多い通信環境下での信頼性通信の実現可能性を高める。
論文 参考訳(メタデータ) (2024-01-19T16:43:47Z) - Will 6G be Semantic Communications? Opportunities and Challenges from
Task Oriented and Secure Communications to Integrated Sensing [49.83882366499547]
本稿では,マルチタスク学習を統合した次世代(NextG)ネットワークにおけるタスク指向およびセマンティックコミュニケーションの機会と課題について検討する。
我々は、送信側の専用エンコーダと受信側の複数のタスク固有のデコーダを表すディープニューラルネットワークを用いる。
トレーニングとテストの段階において、敵対的攻撃に起因する潜在的な脆弱性を精査する。
論文 参考訳(メタデータ) (2024-01-03T04:01:20Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
本稿では,多モデルプロンプトを用いたGAI支援型SemComシステムを提案する。
セキュリティ上の懸念に応えて、フレンドリーなジャマーによって支援される隠蔽通信の応用を紹介する。
論文 参考訳(メタデータ) (2023-09-05T23:24:56Z) - Learning Multi-Agent Communication with Contrastive Learning [3.816854668079928]
本稿では,コミュニケーション的メッセージが環境状態の異なる不完全なビューと見なされる,別の視点を紹介する。
送信したメッセージと受信したメッセージの関係を調べることで,コントラスト学習を用いてコミュニケーションを学ぶことを提案する。
通信環境において,本手法は性能と学習速度の両面で,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-03T23:51:05Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
単一ユーザと複数ユーザのコミュニケーションシナリオに対して,認知意味コミュニケーションフレームワークが2つ提案されている。
知識グラフから推論規則をマイニングすることにより,効果的な意味補正アルゴリズムを提案する。
マルチユーザ認知型セマンティックコミュニケーションシステムにおいて,異なるユーザのメッセージを識別するために,メッセージ復元アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-15T12:01:43Z) - On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
社会学習は、専門家からのヒントを使って、異質なポリシーを整列し、サンプルの複雑さを減らし、部分的に観察可能なタスクを解決する。
本稿では,情報ボトルネックに基づく教師なし手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T03:23:27Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
インターネット・オブ・センセーズ(IoS)は、すべてのヒト受容体に対する欠陥のないテレプレゼンススタイルのコミュニケーションを約束する。
我々は,新たなセマンティックコミュニケーションと人工知能(AI)/機械学習(ML)パラダイムがIoSユースケースの要件を満たす方法について詳しく述べる。
論文 参考訳(メタデータ) (2022-12-21T03:37:38Z) - Beyond Transmitting Bits: Context, Semantics, and Task-Oriented
Communications [88.68461721069433]
次世代システムは、メッセージセマンティクスを折り畳み、コミュニケーションの目標を設計に組み込むことによって、潜在的に豊かになる。
このチュートリアルは、初期適応、セマンティック・アウェア、タスク指向コミュニケーションから始まり、現在までの取り組みを要約する。
その焦点は、情報理論を利用して基礎を提供するアプローチと、意味論やタスク対応コミュニケーションにおける学習の重要な役割である。
論文 参考訳(メタデータ) (2022-07-19T16:00:57Z) - Towards Human-Agent Communication via the Information Bottleneck
Principle [19.121541894577298]
これら3つの要因(実用性、情報性、複雑さ)のトレーディングが、いかに創発的なコミュニケーションを形作るかを研究する。
本稿では,連続空間に埋め込まれた離散信号に入力を圧縮するニューラルネットワークを訓練するVector-Quantized Variational Information Bottleneck (VQ-VIB)を提案する。
論文 参考訳(メタデータ) (2022-06-30T20:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。