論文の概要: Contour-weighted loss for class-imbalanced image segmentation
- arxiv url: http://arxiv.org/abs/2407.06176v1
- Date: Fri, 7 Jun 2024 07:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 14:07:46.889015
- Title: Contour-weighted loss for class-imbalanced image segmentation
- Title(参考訳): クラス不均衡画像分割のための輪郭重み付き損失
- Authors: Zhhengyong Huang, Yao Sui,
- Abstract要約: 画像のセグメンテーションは、ほとんど全ての医療画像解析において、自動解釈と処理において極めて重要である。
クラス内とクラス間のデータ不均衡のため、イメージセグメンテーションを実行することはしばしば困難である。
本稿では,コンパクトで効果的な輪郭重み付き損失関数を用いた新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.183832403223894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image segmentation is critically important in almost all medical image analysis for automatic interpretations and processing. However, it is often challenging to perform image segmentation due to data imbalance between intra- and inter-class, resulting in over- or under-segmentation. Consequently, we proposed a new methodology to address the above issue, with a compact yet effective contour-weighted loss function. Our new loss function incorporates a contour-weighted cross-entropy loss and separable dice loss. The former loss extracts the contour of target regions via morphological erosion and generates a weight map for the cross-entropy criterion, whereas the latter divides the target regions into contour and non-contour components through the extracted contour map, calculates dice loss separately, and combines them to update the network. We carried out abdominal organ segmentation and brain tumor segmentation on two public datasets to assess our approach. Experimental results demonstrated that our approach offered superior segmentation, as compared to several state-of-the-art methods, while in parallel improving the robustness of those popular state-of-the-art deep models through our new loss function. The code is available at https://github.com/huangzyong/Contour-weighted-Loss-Seg.
- Abstract(参考訳): 画像のセグメンテーションは、ほとんど全ての医療画像解析において、自動解釈と処理において極めて重要である。
しかし、クラス内とクラス間のデータ不均衡のため、画像のセグメンテーションを実行することはしばしば困難であり、結果としてオーバーセグメンテーションやアンダーセグメンテーションが発生する。
そこで本稿では,コンパクトで効果的な輪郭重み付き損失関数を用いた新しい手法を提案する。
新たな損失関数には,輪郭重み付きクロスエントロピー損失と分離可能なサイコロ損失が組み込まれている。
前者の損失は、形態的侵食により対象領域の輪郭を抽出し、クロスエントロピー基準のための重みマップを生成する一方、後者は、抽出された輪郭マップを介して対象領域を輪郭成分と非輪郭成分に分割し、個別にダイス損失を計算し、それらを結合してネットワークを更新する。
腹部臓器の分節と脳腫瘍の分節を2つの公開データセットで行った。
実験の結果,提案手法はいくつかの最先端手法と比較して,より優れたセグメンテーションを実現する一方で,新たなロス関数により,これらの人気深層モデルのロバスト性を並列に改善することを示した。
コードはhttps://github.com/huangzyong/Contour-weighted-Loss-Segで公開されている。
関連論文リスト
- Boundary Difference Over Union Loss For Medical Image Segmentation [30.75832534753879]
我々は、境界領域分割を導くために、ユニオン損失(境界DoU損失)に対する境界差という、シンプルで効果的な損失を開発した。
私たちの損失はリージョンの計算にのみ依存するので、追加の損失を必要とせずに、実装やトレーニングが簡単になります。
論文 参考訳(メタデータ) (2023-08-01T01:27:34Z) - Topology-Aware Loss for Aorta and Great Vessel Segmentation in Computed
Tomography Images [1.4680035572775534]
本稿では, 地平と予測のトポロジの相違を罰する新たなトポロジ認識損失関数を提案する。
4327枚のCT画像から,提案したトポロジ・アウェア・ロス関数がそれより優れた結果をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2023-07-06T17:06:49Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Uncertainty-Based Dynamic Graph Neighborhoods For Medical Segmentation [0.0]
セグメンテーションの結果の処理と精錬は、セグメンテーションネットワークから派生した誤分類を減らすための一般的な手法である。
グラフベースのアプローチでは、グラフ内の特定の不確実点を利用し、小さなグラフ畳み込みネットワーク(GCN)に従ってセグメンテーションを洗練する。
本稿では,特徴距離に応じた新しい隣人選択機構を提案し,トレーニング手順における2つのネットワークの組み合わせを提案する。
論文 参考訳(メタデータ) (2021-08-06T13:39:35Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
位置情報は,対象物体の多様体構造を捉えた深層学習モデルに有効であることが証明された。
既存のほとんどの手法は、ネットワークが学習するために、位置情報を暗黙的にエンコードする。
セグメント化対象の位置情報を明示的に埋め込むために,新しい損失関数,すなわち残差モーメント(RM)損失を提案する。
論文 参考訳(メタデータ) (2021-06-27T09:31:49Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
逆変換ネットワークを用いたセマンティックセグメンテーションのための新しい境界認識損失項を提案する。
このプラグイン損失項は境界変換の捕捉におけるクロスエントロピー損失を補完する。
室内および屋外のセグメンテーションベンチマークにおける損失関数の定量的および定性的効果を解析した。
論文 参考訳(メタデータ) (2021-04-06T18:52:45Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
サイクル一貫性のある生成共役ネットワークは、ソースとターゲットドメイン間のイメージセットの調和に使われてきた。
これらの手法は、不安定性、コントラストの逆転、病理の難治性操作、および実際の医用画像における信頼性を制限したステガノグラフィーマッピングの傾向が強い。
解剖学的レイアウトを維持しながらスキャナ間の調和を低減するセグメンテーション正規化画像翻訳フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-11T23:53:51Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Adversarial Semantic Data Augmentation for Human Pose Estimation [96.75411357541438]
本研究では,セマンティックデータ拡張法 (SDA) を提案する。
また,適応的セマンティックデータ拡張 (ASDA) を提案する。
最先端の結果は、挑戦的なベンチマークで得られます。
論文 参考訳(メタデータ) (2020-08-03T07:56:04Z) - An Elastic Interaction-Based Loss Function for Medical Image
Segmentation [10.851295591782538]
本稿では,医用画像セグメンテーションのための長距離弾性相互作用に基づくトレーニング戦略を提案する。
この戦略において、CNNは予測領域の境界と実際の物体の境界との間の弾性相互作用エネルギーの誘導の下で対象領域を学習する。
実験結果から,本手法は一般的に用いられている画素単位の損失関数と比較して,大幅な改善が可能であることが示された。
論文 参考訳(メタデータ) (2020-07-06T11:49:14Z) - Bending Loss Regularized Network for Nuclei Segmentation in
Histopathology Images [69.74667930907314]
核分割のための曲げ損失正規化ネットワークを提案する。
提案した曲げ損失は、大きな曲率を持つ輪郭点に対する高い罰則を定義し、小さな曲率を持つ輪郭点に小さな罰則を適用する。
曲げ損失の最小化は、複数の核を含む輪郭の発生を避けることができる。
論文 参考訳(メタデータ) (2020-02-03T21:20:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。