論文の概要: Deep Distance Map Regression Network with Shape-aware Loss for Imbalanced Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2501.09116v1
- Date: Wed, 15 Jan 2025 19:52:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:09:31.561237
- Title: Deep Distance Map Regression Network with Shape-aware Loss for Imbalanced Medical Image Segmentation
- Title(参考訳): 不均衡な医用画像分割のための形状認識損失を有する深部距離マップ回帰ネットワーク
- Authors: Huiyu Li, Xiabi Liu, Said Boumaraf, Xiaopeng Gong, Donghai Liao, Xiaohong Ma,
- Abstract要約: 既存のバイナリセグメンテーションネットワークと軽量回帰ネットワークを組み込んだ新しいセグメンテーションフレームワーク(LR-Net)を提案する。
物体の完全な形状を推定するために,距離マップをペナルティマップとして利用することにより,形状認識損失を導出する。
実験の結果,本手法は既存の最先端技術と同様に,他の分類手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 3.8769521116457146
- License:
- Abstract: Small object segmentation, like tumor segmentation, is a difficult and critical task in the field of medical image analysis. Although deep learning based methods have achieved promising performance, they are restricted to the use of binary segmentation mask. Inspired by the rigorous mapping between binary segmentation mask and distance map, we adopt distance map as a novel ground truth and employ a network to fulfill the computation of distance map. Specially, we propose a new segmentation framework that incorporates the existing binary segmentation network and a light weight regression network (dubbed as LR-Net). Thus, the LR-Net can convert the distance map computation into a regression task and leverage the rich information of distance maps. Additionally, we derive a shape-aware loss by employing distance maps as penalty map to infer the complete shape of an object. We evaluated our approach on MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge dataset and a clinical dataset. Experimental results show that our approach outperforms the classification-based methods as well as other existing state-of-the-arts.
- Abstract(参考訳): 腫瘍のセグメンテーションのような小さな物体のセグメンテーションは、医療画像解析の分野において困難かつ重要な課題である。
ディープラーニングに基づく手法は有望な性能を達成したが、バイナリセグメンテーションマスクの使用に限定されている。
二分法マスクと距離マップの厳密なマッピングに触発されて、距離マップを新しい基底真理として採用し、距離マップの計算にネットワークを用いる。
具体的には、既存のバイナリセグメンテーションネットワークと軽量回帰ネットワーク(LR-Net)を組み込んだ新しいセグメンテーションフレームワークを提案する。
したがって、LR-Netは距離マップ計算を回帰タスクに変換し、距離マップの豊富な情報を利用することができる。
さらに,物体の完全な形状を推定するために,距離マップをペナルティマップとして利用することにより,形状認識損失を導出する。
我々はMICCAI 2017 Liver tumor Segmentation (LiTS) Challenge データセットと臨床データセットについて検討した。
実験の結果,本手法は既存の最先端技術と同様に,分類に基づく手法よりも優れていることがわかった。
関連論文リスト
- PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation [1.4680035572775534]
我々は,新たなトポロジ認識損失関数を導入し,ネットワークに対して,地上の真実と予測マップのトポロジ的相違を最小化するよう強制する。
セグメント化ネットワーク損失の文脈において,各マップのトポロジを永続画像表現によって定量化する。
提案したPI-Att損失は, 大動脈と大血管のセグメンテーションの2つの異なるデータセットで評価された。
論文 参考訳(メタデータ) (2024-08-15T09:06:49Z) - Contour-weighted loss for class-imbalanced image segmentation [2.183832403223894]
画像のセグメンテーションは、ほとんど全ての医療画像解析において、自動解釈と処理において極めて重要である。
クラス内とクラス間のデータ不均衡のため、イメージセグメンテーションを実行することはしばしば困難である。
本稿では,コンパクトで効果的な輪郭重み付き損失関数を用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-07T07:43:52Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
位置情報は,対象物体の多様体構造を捉えた深層学習モデルに有効であることが証明された。
既存のほとんどの手法は、ネットワークが学習するために、位置情報を暗黙的にエンコードする。
セグメント化対象の位置情報を明示的に埋め込むために,新しい損失関数,すなわち残差モーメント(RM)損失を提案する。
論文 参考訳(メタデータ) (2021-06-27T09:31:49Z) - Dense Regression Activation Maps For Lesion Segmentation in CT scans of
COVID-19 patients [9.313053265087262]
重回帰アクティベーションマップ(dRAM)に基づく弱教師付きセグメンテーション手法を提案する。
提案手法は,CAMに基づく弱教師付きセグメンテーション方式の0.335から0.495への結合を著しく改善する。
論文 参考訳(メタデータ) (2021-05-25T08:29:35Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - Meta Corrupted Pixels Mining for Medical Image Segmentation [30.140008860735062]
医用画像のセグメンテーションでは、正確なピクセルレベルのアノテーションを取得するのは非常に困難で費用がかかる。
本稿では,メタマスクネットワークに基づく新しいMeta Corrupted Pixels Mining (MCPM)法を提案する。
本手法は,分割ネットワーク学習における各画素の重要性を評価するために,重み付けマップを自動的に推定することを目的としている。
論文 参考訳(メタデータ) (2020-07-07T15:12:20Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。