論文の概要: Common Sense Is All You Need
- arxiv url: http://arxiv.org/abs/2501.06642v1
- Date: Sat, 11 Jan 2025 21:23:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:25:37.401207
- Title: Common Sense Is All You Need
- Title(参考訳): Common Senseは必要なものすべて
- Authors: Hugo Latapie,
- Abstract要約: 人工知能(AI)は近年大きな進歩を遂げているが、すべての動物に存在する認知の基本的な側面(常識)に悩まされ続けている。
現在のAIシステムは、広範囲の事前知識を必要とせずに、新しい状況に適応する能力に欠けることが多い。
この原稿は、AIシステムに常識を統合することは、真の自律性を達成し、AIの完全な社会的および商業的価値を解放するために不可欠である、と論じている。
- 参考スコア(独自算出の注目度): 5.280511830552275
- License:
- Abstract: Artificial intelligence (AI) has made significant strides in recent years, yet it continues to struggle with a fundamental aspect of cognition present in all animals: common sense. Current AI systems, including those designed for complex tasks like autonomous driving, problem-solving challenges such as the Abstraction and Reasoning Corpus (ARC), and conversational benchmarks like the Turing Test, often lack the ability to adapt to new situations without extensive prior knowledge. This manuscript argues that integrating common sense into AI systems is essential for achieving true autonomy and unlocking the full societal and commercial value of AI. We propose a shift in the order of knowledge acquisition emphasizing the importance of developing AI systems that start from minimal prior knowledge and are capable of contextual learning, adaptive reasoning, and embodiment -- even within abstract domains. Additionally, we highlight the need to rethink the AI software stack to address this foundational challenge. Without common sense, AI systems may never reach true autonomy, instead exhibiting asymptotic performance that approaches theoretical ideals like AIXI but remains unattainable in practice due to infinite resource and computation requirements. While scaling AI models and passing benchmarks like the Turing Test have brought significant advancements in applications that do not require autonomy, these approaches alone are insufficient to achieve autonomous AI with common sense. By redefining existing benchmarks and challenges to enforce constraints that require genuine common sense, and by broadening our understanding of embodiment to include both physical and abstract domains, we can encourage the development of AI systems better equipped to handle the complexities of real-world and abstract environments.
- Abstract(参考訳): 人工知能(AI)は近年大きな進歩を遂げているが、すべての動物に存在する認知の基本的な側面(常識)に悩まされ続けている。
現在のAIシステムには、自律運転のような複雑なタスクのために設計されたもの、抽象と推論コーパス(ARC)のような問題解決の課題、チューリングテストのような会話型ベンチマークが含まれる。
この原稿は、AIシステムに常識を統合することは、真の自律性を達成し、AIの完全な社会的および商業的価値を解放するために不可欠である、と論じている。
我々は、最小の事前知識から始まり、文脈学習、適応推論、実施が可能なAIシステム(抽象ドメイン内においても)を開発することの重要性を強調する知識獲得の順序の変化を提案する。
さらに、この基本的な課題に対処するために、AIソフトウェアスタックを再考する必要性を強調します。
常識がなければ、AIシステムは真の自律性には到達せず、代わりに、AIXIのような理論的な理想に近づいた漸近的なパフォーマンスを示す。
AIモデルをスケールし、チューリングテストのようなベンチマークをパスすることは、自律性を必要としないアプリケーションに大きな進歩をもたらしたが、これらのアプローチだけでも、常識を持って自律AIを達成するには不十分である。
真の常識を必要とする制約を強制する既存のベンチマークと課題を再定義し、物理的なドメインと抽象的なドメインの両方を含むための具体化の理解を広げることで、現実世界と抽象的な環境の複雑さに対処するためのAIシステムの開発をより促進することができる。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Trustworthy XAI and Application [0.0]
本稿では、XAI、信頼性の高いXAI、信頼性の高いXAIの実用的利用について論じる。
我々は、この状況に関係があると判断した3つの主要なコンポーネント、透明性、説明可能性、信頼性を乗り越えます。
結局のところ、人間とAIシステム間の信頼の確立と維持には信頼性が不可欠である。
論文 参考訳(メタデータ) (2024-10-22T16:10:10Z) - AI and Social Theory [0.0]
我々は、人工知能(AI)が意味するものを定義することから始まる、AI駆動型社会理論のプログラムをスケッチする。
そして、AIベースのモデルがデジタルデータの可用性を増大させ、予測力に基づいて異なる社会的理論の有効性をテストするためのモデルを構築します。
論文 参考訳(メタデータ) (2024-07-07T12:26:16Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - General Purpose Artificial Intelligence Systems (GPAIS): Properties,
Definition, Taxonomy, Societal Implications and Responsible Governance [16.030931070783637]
汎用人工知能システム(GPAIS)は、これらのAIシステムを指すものとして定義されている。
これまで、人工知能の可能性は、まるで人間であるかのように知的タスクを実行するのに十分強力であり、あるいはそれを改善することさえ可能であり、いまだに願望、フィクションであり、我々の社会にとっての危険であると考えられてきた。
本研究は,GPAISの既存の定義について論じ,その特性や限界に応じて,GPAISの種類間で段階的な分化を可能にする新しい定義を提案する。
論文 参考訳(メタデータ) (2023-07-26T16:35:48Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。