論文の概要: Characterization of topological structures in different neural network architectures
- arxiv url: http://arxiv.org/abs/2407.06286v1
- Date: Mon, 8 Jul 2024 18:02:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 22:13:05.990935
- Title: Characterization of topological structures in different neural network architectures
- Title(参考訳): 異なるニューラルネットワークアーキテクチャにおける位相構造の解析
- Authors: Paweł Świder,
- Abstract要約: 本研究では,異なるアーキテクチャの表現を解析し,その表現を用いて有効な結果を得る方法を提案する。
これらの手法をResNet, VGG19, ViTアーキテクチャに適用し, 類似点と相違点が認められた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most crucial tasks in the future will be to understand what is going on in neural networks, as they will become even more powerful and widely deployed. This work aims to use TDA methods to analyze neural representations. We develop methods for analyzing representations from different architectures and check how one should use them to obtain valid results. Our findings indicate that removing outliers does not have much impact on the results and that we should compare representations with the same number of elements. We applied these methods for ResNet, VGG19, and ViT architectures and found substantial differences along with some similarities. Additionally, we determined that models with similar architecture tend to have a similar topology of representations and models with a larger number of layers change their topology more smoothly. Furthermore, we found that the topology of pre-trained and finetuned models starts to differ in the middle and final layers while remaining quite similar in the initial layers. These findings demonstrate the efficacy of TDA in the analysis of neural network behavior.
- Abstract(参考訳): 将来的に最も重要な課題の1つは、ニューラルネットワークで何が起きているのかを理解することだ。
この研究は、TDA法を用いて神経表現を分析することを目的としている。
本研究では,異なるアーキテクチャの表現を解析し,その表現を用いて有効な結果を得る方法を提案する。
その結果,外乱除去は結果に大きな影響を与えず,同じ要素数で表現を比較すべきであることが示唆された。
これらの手法をResNet, VGG19, ViTアーキテクチャに適用し, 類似点と相違点が認められた。
さらに、類似したアーキテクチャを持つモデルは、表現のトポロジを持つ傾向があり、多くのレイヤーを持つモデルは、そのトポロジをよりスムーズに変化させる。
さらに、事前訓練されたモデルと微調整されたモデルのトポロジは、中間層と最終層では相変わらず、初期層では相変わらず類似していることが判明した。
これらの結果は,ニューラルネットワークの挙動解析におけるTDAの有効性を示した。
関連論文リスト
- Enhancing Convolutional Neural Networks with Higher-Order Numerical Difference Methods [6.26650196870495]
畳み込みニューラルネットワーク(CNN)は、人間が多くの現実世界の問題を解決するのを助けることができる。
本稿では,CNNの性能向上を目的とした線形多段階法に基づく重ね合わせ手法を提案する。
論文 参考訳(メタデータ) (2024-09-08T05:13:58Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Model Stitching: Looking For Functional Similarity Between
Representations [5.657258033928475]
我々は、モデルステッチを使用して、異なるシードおよび/または同じアーキテクチャのトレーニングされたニューラルネットワークによって学習された同じ形状の表現を比較する、以前の研究を拡張した。
モデル縫合の予期せぬ挙動を明らかにする。つまり、小さなResNetに対して畳み込みに基づく縫合は、第1(sender)ネットワークにおいて第2(receiver)よりも第2(receiver)ネットワークで後になっても高い精度に達する。
論文 参考訳(メタデータ) (2023-03-20T17:12:42Z) - Experimental Observations of the Topology of Convolutional Neural
Network Activations [2.4235626091331737]
トポロジカル・データ解析は、複雑な構造のコンパクトでノイズ・ロバストな表現を提供する。
ディープニューラルネットワーク(DNN)は、モデルアーキテクチャによって定義された一連の変換に関連する数百万のパラメータを学習する。
本稿では,画像分類に使用される畳み込みニューラルネットワークの解釈可能性に関する知見を得る目的で,TDAの最先端技術を適用した。
論文 参考訳(メタデータ) (2022-12-01T02:05:44Z) - Do Neural Networks Trained with Topological Features Learn Different
Internal Representations? [1.418465438044804]
本研究では、トポロジカルな特徴で訓練されたモデルが、元の生データで学習したモデルと根本的に異なるデータの内部表現を学習するかどうかを検討する。
構造的には、トポロジカルな特徴に基づいて訓練・評価されたモデルの隠れ表現は、対応する生データに基づいて訓練・評価されたモデルと大きく異なることがわかった。
これは、生データに基づいてトレーニングされたニューラルネットワークが、予測を行う過程で限られたトポロジ的特徴を抽出することを意味すると推測する。
論文 参考訳(メタデータ) (2022-11-14T19:19:04Z) - Creating Powerful and Interpretable Models withRegression Networks [2.2049183478692584]
本稿では,ニューラルネットワークのパワーと回帰分析の可視性を組み合わせた新しいアーキテクチャRegression Networksを提案する。
これらのモデルが,いくつかのベンチマークデータセット上での解釈可能なモデルの最先端性能を上回ることを実証する。
論文 参考訳(メタデータ) (2021-07-30T03:37:00Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
複素領域における異なる変動演算子の効果について検討する。
モデルの複雑さと性能に影響を及ぼす変化演算子と、それを構成する異なる部分の質を推定する様々な指標に依存するモデルの両方を特徴付ける。
論文 参考訳(メタデータ) (2021-06-16T17:12:26Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
我々は、通常見過ごされる設計空間、すなわち事前定義されたネットワークのチャネル構成を調整することを検討する。
この調整は、拡張ベースラインネットワークを縮小することで実現でき、性能が向上する。
画像分類、視覚追跡、画像復元のための様々なネットワークとデータセットで実験を行う。
論文 参考訳(メタデータ) (2020-06-29T17:59:26Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。