論文の概要: An XAI-based Analysis of Shortcut Learning in Neural Networks
- arxiv url: http://arxiv.org/abs/2504.15664v1
- Date: Tue, 22 Apr 2025 07:40:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 21:44:53.693396
- Title: An XAI-based Analysis of Shortcut Learning in Neural Networks
- Title(参考訳): XAIを用いたニューラルネットワークにおけるショートカット学習の解析
- Authors: Phuong Quynh Le, Jörg Schlötterer, Christin Seifert,
- Abstract要約: 我々は,ニューロンの刺激的特徴への依存性を定量化するために,ニューロンの刺激的スコアを導入する。
以上の結果から, 突発的特徴は部分的には絡み合っているが, モデルアーキテクチャ間での絡み合わ度は異なることがわかった。
我々の研究結果は、突発的な相関を緩和し、AIモデルを実際により安全に使えるようにするための新しい手法の開発の基礎を築いた。
- 参考スコア(独自算出の注目度): 2.592470112714595
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning models tend to learn spurious features - features that strongly correlate with target labels but are not causal. Existing approaches to mitigate models' dependence on spurious features work in some cases, but fail in others. In this paper, we systematically analyze how and where neural networks encode spurious correlations. We introduce the neuron spurious score, an XAI-based diagnostic measure to quantify a neuron's dependence on spurious features. We analyze both convolutional neural networks (CNNs) and vision transformers (ViTs) using architecture-specific methods. Our results show that spurious features are partially disentangled, but the degree of disentanglement varies across model architectures. Furthermore, we find that the assumptions behind existing mitigation methods are incomplete. Our results lay the groundwork for the development of novel methods to mitigate spurious correlations and make AI models safer to use in practice.
- Abstract(参考訳): マシンラーニングモデルは、ターゲットラベルと強く相関するが因果関係のない、突発的な特徴を学ぶ傾向がある。
モデルがスパイラルな機能に依存することを緩和するための既存のアプローチは、いくつかのケースで機能するが、他のケースでは失敗する。
本稿では,ニューラルネットワークがスプリアス相関をどのように,どこでエンコードしているかを系統的に分析する。
我々は,ニューロンの刺激的特徴への依存性を定量化するためのXAIに基づく診断尺度である神経刺激性スコアを導入する。
アーキテクチャ固有の手法を用いて,畳み込みニューラルネットワーク(CNN)と視覚変換器(ViT)の両方を解析する。
以上の結果から, 突発的特徴は部分的には絡み合っているが, モデルアーキテクチャ間での絡み合わ度は異なることがわかった。
さらに,既存の緩和手法の背景にある仮定が不完全であることが判明した。
我々の研究結果は、突発的な相関を緩和し、AIモデルを実際により安全に使えるようにするための新しい手法の開発の基礎を築いた。
関連論文リスト
- Latent Variable Sequence Identification for Cognitive Models with Neural Network Estimators [7.7227297059345466]
本稿では,ニューラルベイズ推定を拡張して,実験データと対象変数空間との直接マッピングを学習する手法を提案する。
我々の研究は、リカレントニューラルネットワークとシミュレーションベースの推論を組み合わせることで、潜在変数配列を特定することで、研究者がより広範な認知モデルにアクセスできるようになることを強調している。
論文 参考訳(メタデータ) (2024-06-20T21:13:39Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Neural Dependencies Emerging from Learning Massive Categories [94.77992221690742]
この研究は、大規模画像分類のために学んだニューラルネットワークに関する2つの驚くべき発見を示す。
1) 十分に訓練されたモデルが与えられた場合、いくつかのカテゴリで予測されたロジットは、他のいくつかのカテゴリの予測を線形に組み合わせることで直接得ることができる。
2) 神経依存は1つのモデルに留まらず、2つの独立した学習モデルの間にさえ存在する。
論文 参考訳(メタデータ) (2022-11-21T09:42:15Z) - Investigating Neuron Disturbing in Fusing Heterogeneous Neural Networks [6.389882065284252]
本稿では,異種局所モデルのニューロン同士が相互に干渉するニューロン乱れ現象を明らかにする。
本稿では,ニューラルネットワークの乱れを排除し,AMSと呼ばれる局所モデルを適応的に選択して予測を行う実験手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T06:47:48Z) - Similarity of Neural Architectures using Adversarial Attack Transferability [47.66096554602005]
ニューラルネットワーク間の定量的かつスケーラブルな類似度尺度を設計する。
我々は69の最先端画像ネット分類器を大規模に解析する。
我々の結果は、異なるコンポーネントを持つ多様なニューラルアーキテクチャの開発がなぜ必要かについての洞察を提供する。
論文 参考訳(メタデータ) (2022-10-20T16:56:47Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
科学と工学において、モデリング(英: modeling)とは、内部プロセスが不透明な複雑なシステムを理解するために用いられる方法論である。
本稿では,ガウス過程を用いたニューラルネットワークの代理モデルのクラスを構築する。
提案手法は,ニューラルネットワークのスペクトルバイアスに関連する既存の現象を捕捉し,サロゲートモデルを用いて現実的な問題を解決することを実証する。
論文 参考訳(メタデータ) (2022-08-11T20:17:02Z) - Causal Discovery and Knowledge Injection for Contestable Neural Networks
(with Appendices) [10.616061367794385]
本稿では,ニューラルネットワークを利用したマシンが学習因果グラフの基盤を公開できる双方向インタラクションを提案する。
提案手法は,入力層で最大7倍小さい擬似ネットワークを生成中の予測性能を2.4倍に向上することを示す。
論文 参考訳(メタデータ) (2022-05-19T18:21:12Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Persistent Homology Captures the Generalization of Neural Networks
Without A Validation Set [0.0]
本稿では,代数的トポロジー,特に永続的ホモロジーを用いたニューラルネットワークのトレーニングについて考察する。
ニューラルネットワークの単純な複雑な表現を用いて、ニューラルネットワーク学習プロセスにおけるPHダイアグラム距離の進化について検討する。
その結果,連続するニューラルネットワーク状態間のPHダイアグラム距離は,検証精度と相関していることがわかった。
論文 参考訳(メタデータ) (2021-05-31T09:17:31Z) - Learning Variational Data Assimilation Models and Solvers [34.22350850350653]
データ同化のためのエンドツーエンドニューラルネットワークアーキテクチャを導入する。
提案するエンドツーエンド学習アーキテクチャの重要な特徴は、教師なし戦略と教師なし戦略の両方を用いてNNモデルをトレーニングできることである。
論文 参考訳(メタデータ) (2020-07-25T14:28:48Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。