論文の概要: Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation
- arxiv url: http://arxiv.org/abs/2407.06317v1
- Date: Mon, 8 Jul 2024 18:32:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 22:03:20.947055
- Title: Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation
- Title(参考訳): 自動運転における安全性の向上--エンド・ツー・エンドナビゲーションにおける潜在状態拡散モデルの統合
- Authors: Jianuo Huang, Zhenlong Fang,
- Abstract要約: 本研究は自動運転の制御最適化問題における安全性問題に対処する。
本稿では,条件付きバリュー・アット・リスクに基づくソフトアクター批判を利用して,ポリシー最適化のための新しいモデルベースアプローチを提案する。
本手法では, 安全探索を誘導する最悪のアクターを導入し, 予測不可能なシナリオにおいても, 安全要件の厳密な遵守を確保する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of autonomous driving, ensuring safety during motion planning and navigation is becoming more and more important. However, most end-to-end planning methods suffer from a lack of safety. This research addresses the safety issue in the control optimization problem of autonomous driving, formulated as Constrained Markov Decision Processes (CMDPs). We propose a novel, model-based approach for policy optimization, utilizing a conditional Value-at-Risk based Soft Actor Critic to manage constraints in complex, high-dimensional state spaces effectively. Our method introduces a worst-case actor to guide safe exploration, ensuring rigorous adherence to safety requirements even in unpredictable scenarios. The policy optimization employs the Augmented Lagrangian method and leverages latent diffusion models to predict and simulate future trajectories. This dual approach not only aids in navigating environments safely but also refines the policy's performance by integrating distribution modeling to account for environmental uncertainties. Empirical evaluations conducted in both simulated and real environment demonstrate that our approach outperforms existing methods in terms of safety, efficiency, and decision-making capabilities.
- Abstract(参考訳): 自動運転の進歩により、移動計画やナビゲーションにおける安全性の確保がますます重要になっている。
しかし、ほとんどのエンドツーエンドの計画手法は安全性の欠如に悩まされている。
本研究は、CMDP(Constrained Markov Decision Processs)として定式化された自動運転の制御最適化問題における安全性問題に対処する。
複雑な高次元状態空間における制約を効果的に管理するために,条件付きバリュー・アット・リスクに基づくソフト・アクター・クリティカルを用いて,ポリシー最適化のための新しいモデルベースアプローチを提案する。
本手法では, 安全探索を誘導する最悪のアクターを導入し, 予測不可能なシナリオにおいても, 安全要件の厳密な遵守を確保する。
政策最適化は拡張ラグランジアン法を採用し、遅延拡散モデルを利用して将来の軌道を予測しシミュレーションする。
この2つのアプローチは、環境を安全にナビゲートするだけでなく、環境の不確実性を考慮した流通モデルを統合することで、政策のパフォーマンスを向上する。
シミュレーションと実環境の両方で実施した実証評価では,既存の手法よりも安全性,効率,意思決定能力が優れていた。
関連論文リスト
- Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning [4.14360329494344]
強化学習(Reinforcement Learning, RL)は、過去数十年にわたって、幅広い領域で意思決定に革命をもたらした。
しかし、現実のシナリオにRLポリシーをデプロイすることは、安全性を確保する上で重要な課題である。
従来の安全RLアプローチは、事前に定義された安全制約を政策学習プロセスに組み込むことに重点を置いてきた。
本稿では,安全なRL制御ポリシを同時に学習し,その環境の未知の安全制約パラメータを同定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-24T20:01:15Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Controllable Adversaries [94.84458417662407]
本稿では,新しい拡散制御型クローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
我々は,認知過程における敵対的項を通して,安全クリティカルなシナリオをシミュレートする新しい手法を開発した。
我々はNuScenesデータセットを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
メタ学習アルゴリズムであるF-PACOHを構築し,データ不足の設定において確実な定量化を実現する。
コアコントリビューションとして、安全に適合した事前をデータ駆動で選択するための新しいフレームワークを開発する。
ベンチマーク関数と高精度動作系において,我々のメタ学習先行が安全なBOアプローチの収束を加速することを示す。
論文 参考訳(メタデータ) (2022-10-03T08:38:38Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
本研究では,環境を協調的に学習し,制御ポリシーを最適化する安全な強化学習手法を提案する。
本手法は, 安全性の制約を効果的に適用し, シミュレーションにより測定したシステム安全率においてCMDPベースのベースライン法を著しく上回っている。
論文 参考訳(メタデータ) (2022-09-29T20:49:25Z) - Constrained Policy Optimization via Bayesian World Models [79.0077602277004]
LAMBDAは、マルコフ決定プロセスを通じてモデル化された安全クリティカルタスクにおけるポリシー最適化のためのモデルに基づくアプローチである。
LAMBDA のSafety-Gymベンチマークスイートにおける技術性能について,サンプル効率と制約違反の観点から示す。
論文 参考訳(メタデータ) (2022-01-24T17:02:22Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement Learning (RL)は、様々なシーケンシャルな意思決定タスクに対して最適なポリシーを学ぶ上で、有望なパフォーマンスを示している。
多くの現実世界のRL問題において、主な目的を最適化する以外に、エージェントは一定のレベルの安全性を満たすことが期待されている。
これらの制約に対処するために,リャプノフに基づく不確実性を考慮した安全なRLモデルを提案する。
論文 参考訳(メタデータ) (2021-07-29T13:08:15Z) - Risk-Constrained Interactive Safety under Behavior Uncertainty for
Autonomous Driving [0.0]
許可された計画領域を制限する安全封筒は、行動の不確実性の存在下で解釈可能な安全性をもたらす。
人間は、安全封筒に違反する確率的リスクを受け入れることによって、密集した交通における安全と効率のバランスをとる。
論文 参考訳(メタデータ) (2021-02-05T08:33:39Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z) - Safe Mission Planning under Dynamical Uncertainties [15.533842336139063]
本稿では,不確実な動環境下での安全なロボットミッション計画について考察する。
動的不確実性のモデリングと統合が安全な計画フレームワークに組み込まれているため、これは難しい問題である。
論文 参考訳(メタデータ) (2020-03-05T20:45:42Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
安全運転の最大確率を学習するモデルフリー安全仕様法を提案する。
提案手法は, 各政策改善段階を抑制するための安全な政策に関して, リャプノフ関数を構築する。
安全集合と呼ばれる安全な操作範囲を決定する一連の安全なポリシーを導出する。
論文 参考訳(メタデータ) (2020-02-24T09:20:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。