論文の概要: MagMax: Leveraging Model Merging for Seamless Continual Learning
- arxiv url: http://arxiv.org/abs/2407.06322v2
- Date: Mon, 29 Jul 2024 22:17:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 21:23:40.294512
- Title: MagMax: Leveraging Model Merging for Seamless Continual Learning
- Title(参考訳): MagMax: シームレスな継続的学習のためのモデルマージの活用
- Authors: Daniel Marczak, Bartłomiej Twardowski, Tomasz Trzciński, Sebastian Cygert,
- Abstract要約: 従来の連続学習法とは違い、MagMaxは逐次微調整と最大等級の重み選択を組み合わせる。
我々は、連続タスクのための大規模事前学習モデルの連続学習を可能にする新しいモデル統合戦略であるMagMaxを提案する。
- 参考スコア(独自算出の注目度): 1.0030878538350796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a continual learning approach named MagMax, which utilizes model merging to enable large pre-trained models to continuously learn from new data without forgetting previously acquired knowledge. Distinct from traditional continual learning methods that aim to reduce forgetting during task training, MagMax combines sequential fine-tuning with a maximum magnitude weight selection for effective knowledge integration across tasks. Our initial contribution is an extensive examination of model merging techniques, revealing that simple approaches like weight averaging and random weight selection surprisingly hold up well in various continual learning contexts. More importantly, we present MagMax, a novel model-merging strategy that enables continual learning of large pre-trained models for successive tasks. Our thorough evaluation demonstrates the superiority of MagMax in various scenarios, including class- and domain-incremental learning settings. The code is available at this URL: https://github.com/danielm1405/magmax.
- Abstract(参考訳): 本稿では,MagMaxというモデルマージを利用した連続学習手法を提案する。この手法は,既存の知識を忘れずに,大規模な事前学習モデルで新しいデータから連続的に学習することを可能にする。
MagMaxは、タスクトレーニング中の忘れを減らすことを目的とした従来の連続学習方法とは違い、シーケンシャルな微調整と最大等級の重み選択を組み合わせることで、タスク間の効果的な知識統合を実現する。
最初のコントリビューションはモデルマージ手法の広範な検証であり、平均ウェイトやランダムウェイト選択といった単純なアプローチが、様々な連続的な学習コンテキストにおいて驚くほどうまく機能することを示した。
より重要なことは、連続タスクのための大規模な事前学習モデルの継続的な学習を可能にする新しいモデル統合戦略であるMagMaxを提案することである。
我々は,MagMaxのクラスおよびドメイン増分学習設定など,様々なシナリオにおける優位性を徹底的に評価した。
このURLはhttps://github.com/danielm1405/magmax.com/で公開されている。
関連論文リスト
- LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
既存の手法は、モーダル固有の事前訓練とジョイント・モーダルチューニングに大きく依存しており、新しいモーダルへと拡張する際の計算上の負担が大きくなった。
PathWeaveは、Modal-Path sWitchingとExpAnsion機能を備えた柔軟でスケーラブルなフレームワークである。
PathWeaveは最先端のMLLMと互換性があり、パラメータトレーニングの負担を98.73%削減する。
論文 参考訳(メタデータ) (2024-10-26T13:19:57Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - H-ensemble: An Information Theoretic Approach to Reliable Few-Shot
Multi-Source-Free Transfer [4.328706834250445]
本稿では,対象タスクに対するソースモデルの最適線形結合を学習するHアンサンブル(H-ensemble)というフレームワークを提案する。
H-アンサンブルは,1)少数の目標タスクに対する新しいMSF設定への適応性,2)理論的信頼性,3)解釈や適応が容易な軽量構造を特徴とする。
我々は,Hアンサンブルが最適なタスクアンサンブルを学習し,先行技術より優れていることを示す。
論文 参考訳(メタデータ) (2023-12-19T17:39:34Z) - Initializing Models with Larger Ones [76.41561758293055]
事前訓練された大モデルから重みのサブセットを選択することにより、より小さなモデルを初期化する手法である重み選択を導入する。
実験により, 重量選択は小型モデルの性能を著しく向上し, トレーニング時間を短縮できることが示された。
論文 参考訳(メタデータ) (2023-11-30T18:58:26Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Zero-th Order Algorithm for Softmax Attention Optimization [21.631643446337737]
ソフトマックス最適化に適したゼロ次アルゴリズムを提案する。
本稿では,アルゴリズムの収束を実演し,大規模言語モデルに対する効率的な勾配計算の有効性を明らかにする。
論文 参考訳(メタデータ) (2023-07-17T09:43:50Z) - Modeling Token-level Uncertainty to Learn Unknown Concepts in SLU via
Calibrated Dirichlet Prior RNN [98.4713940310056]
現代パーソナルアシスタントにおける音声言語理解(SLU)の主な課題は、発話から意味概念を抽出することである。
最近の研究では、疑問と回答を収集し、未知のデータを学習し、質問すべきである。
疑わしい監督なしにシーケンスの不確かさをモデル化するために、ソフトマックスベースのスロット充填ニューラルネットワークアーキテクチャを組み込んだ。
論文 参考訳(メタデータ) (2020-10-16T02:12:30Z) - A Primal-Dual Subgradient Approachfor Fair Meta Learning [23.65344558042896]
ショットのメタ学習は、その高速適応能力と、未知のタスクへの精度の一般化で有名である。
そこで本研究では,ごく少数の例を用いて,公正な機械学習モデルのトレーニングを学習するPrimal-Dual Meta-learningフレームワーク,すなわちPDFMを提案する。
論文 参考訳(メタデータ) (2020-09-26T19:47:38Z) - Online Fast Adaptation and Knowledge Accumulation: a New Approach to
Continual Learning [74.07455280246212]
継続的な学習は、新しいタスクに適応しながら、以前のタスクを忘れずにタスクの流れから学ぶエージェントを研究する。
この新たなシナリオでは、現在の連続学習、メタ学習、メタ連続学習、および連続メタ学習技術が失敗することを示します。
本稿では,このシナリオの強力なベースラインとして,人気のあるMAMLアルゴリズムのオンライン拡張であるContinual-MAMLを提案する。
論文 参考訳(メタデータ) (2020-03-12T15:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。