論文の概要: Knowledge Management in the Companion Cognitive Architecture
- arxiv url: http://arxiv.org/abs/2407.06401v1
- Date: Mon, 8 Jul 2024 21:20:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 19:54:43.131719
- Title: Knowledge Management in the Companion Cognitive Architecture
- Title(参考訳): コンパニオン認知アーキテクチャにおける知識管理
- Authors: Constantine Nakos, Kenneth D. Forbus,
- Abstract要約: 我々は,コンパニオン認知アーキテクチャの知識スタック開発において直面した課題について報告する。
同様の課題に直面している他の認知アーキテクチャ開発者にとって、これらの観察が有用であることを証明できることを願っています。
- 参考スコア(独自算出の注目度): 7.136205674624813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the fundamental aspects of cognitive architectures is their ability to encode and manipulate knowledge. Without a consistent, well-designed, and scalable knowledge management scheme, an architecture will be unable to move past toy problems and tackle the broader problems of cognition. In this paper, we document some of the challenges we have faced in developing the knowledge stack for the Companion cognitive architecture and discuss the tools, representations, and practices we have developed to overcome them. We also lay out a series of potential next steps that will allow Companion agents to play a greater role in managing their own knowledge. It is our hope that these observations will prove useful to other cognitive architecture developers facing similar challenges.
- Abstract(参考訳): 認知アーキテクチャの基本的な側面の1つは、知識をエンコードし、操作する能力である。
一貫性があり、よく設計され、スケーラブルな知識管理スキームがなければ、アーキテクチャはおもちゃの問題を通過し、認知の幅広い問題に取り組むことはできないでしょう。
本稿では,コンパニオン認知アーキテクチャの知識スタック開発において直面する課題について述べるとともに,その克服のために開発したツール,表現,実践について議論する。
また、コンパニオンエージェントが自身の知識を管理する上で大きな役割を果たすことができるような、潜在的な次のステップもいくつか検討しています。
同様の課題に直面している他の認知アーキテクチャ開発者にとって、これらの観察が有用であることを証明できることを願っています。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - Causal Reinforcement Learning: A Survey [57.368108154871]
強化学習は、不確実性の下でのシーケンシャルな決定問題の解決に不可欠なパラダイムである。
主な障害の1つは、強化学習エージェントが世界に対する根本的な理解を欠いていることである。
因果性は、体系的な方法で知識を形式化できるという点で顕著な利点がある。
論文 参考訳(メタデータ) (2023-07-04T03:00:43Z) - Identifying and Consolidating Knowledge Engineering Requirements [4.311189028205597]
本稿では,主要なソフトウェア手法を用いて参照アーキテクチャを開発することで,4つの課題に対処することを提案する。
異なる利害関係者や時代の要求を調査することにより、参照アーキテクチャを評価する上で重要な品質特性を23つ特定する。
本稿では、品質特性の優先順位付け、相補的な強みを持つコンポーネントの統合、社会技術的要求の欠如など、包括的な参照アーキテクチャへの次のステップについて論じる。
論文 参考訳(メタデータ) (2023-06-27T00:26:15Z) - Leveraging Skill-to-Skill Supervision for Knowledge Tracing [13.753990664747265]
知識追跡は知的学習システムにおいて重要な役割を担っている。
知識追跡モデルの最近の進歩は、問題解決の歴史をよりうまく活用することを可能にしている。
知識を直接組み込む知識トレースアルゴリズムは、限られたデータやコールドスタートの設定において重要である。
論文 参考訳(メタデータ) (2023-06-12T03:23:22Z) - Thrill-K Architecture: Towards a Solution to the Problem of Knowledge
Based Understanding [0.9390008801320021]
本稿では、人間の知識と知性の分析に基づいて、ニューラルネットワークと様々な種類の知識と知識ソースを組み合わせたハイブリッドシステムの分類を紹介する。
我々はThrill-Kアーキテクチャを,推論,学習,知的制御が可能なフレームワークに,瞬時知識,待機知識,外部知識ソースを統合するためのプロトタイプソリューションとして提示する。
論文 参考訳(メタデータ) (2023-02-28T20:39:35Z) - Learning by Applying: A General Framework for Mathematical Reasoning via
Enhancing Explicit Knowledge Learning [47.96987739801807]
本稿では,既存のモデル(バックボーン)を明示的な知識学習によって原則的に拡張する枠組みを提案する。
LeApでは,新しい問題知識表現パラダイムで知識学習を行う。
LeApはすべてのバックボーンのパフォーマンスを改善し、正確な知識を習得し、より解釈可能な推論プロセスを実現する。
論文 参考訳(メタデータ) (2023-02-11T15:15:41Z) - Intelligent problem-solving as integrated hierarchical reinforcement
learning [11.284287026711125]
生物学的エージェントにおける複雑な問題解決行動の開発は階層的認知機構に依存している。
本稿では,生物にインスパイアされた階層的なメカニズムを組み込むことにより,人工エージェントの高度な問題解決能力を実現する方法を提案する。
われわれの結果は、より洗練された認知にインスパイアされた階層型機械学習アーキテクチャの開発を導くことを期待している。
論文 参考訳(メタデータ) (2022-08-18T09:28:03Z) - HALMA: Humanlike Abstraction Learning Meets Affordance in Rapid Problem
Solving [104.79156980475686]
人間は自然主義的タスクの構造に応じて構成的および因果的抽象化、つまり知識を学ぶ。
エージェントがその知識をどのように表現するかには、知覚、概念、アルゴリズムの3段階の一般化がある、と我々は主張する。
このベンチマークは、ビジュアルコンセプト開発と迅速な問題解決のための新しいタスクドメイン、HALMAを中心にしています。
論文 参考訳(メタデータ) (2021-02-22T20:37:01Z) - A Review on Intelligent Object Perception Methods Combining
Knowledge-based Reasoning and Machine Learning [60.335974351919816]
物体知覚はコンピュータビジョンの基本的なサブフィールドである。
最近の研究は、物体の視覚的解釈のインテリジェンスレベルを拡大するために、知識工学を統合する方法を模索している。
論文 参考訳(メタデータ) (2019-12-26T13:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。