論文の概要: Enhanced Question-Answering for Skill-based learning using Knowledge-based AI and Generative AI
- arxiv url: http://arxiv.org/abs/2504.07463v1
- Date: Thu, 10 Apr 2025 05:25:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:21:25.247414
- Title: Enhanced Question-Answering for Skill-based learning using Knowledge-based AI and Generative AI
- Title(参考訳): 知識ベースAIと生成AIを用いたスキルベース学習のための強化された質問応答
- Authors: Rahul K. Dass, Rochan H. Madhusudhana, Erin C. Deye, Shashank Verma, Timothy A. Bydlon, Grace Brazil, Ashok K. Goel,
- Abstract要約: 我々は、テレロジカル、因果、構成原理を具現化した説明を生成するインテリジェントエージェントであるIvyを紹介する。
これにより、学習者はオンライン環境において効果的な問題解決に不可欠なスキルを包括的に理解することが可能になる。
- 参考スコア(独自算出の注目度): 2.6699230340282796
- License:
- Abstract: Supporting learners' understanding of taught skills in online settings is a longstanding challenge. While exercises and chat-based agents can evaluate understanding in limited contexts, this challenge is magnified when learners seek explanations that delve into procedural knowledge (how things are done) and reasoning (why things happen). We hypothesize that an intelligent agent's ability to understand and explain learners' questions about skills can be significantly enhanced using the TMK (Task-Method-Knowledge) model, a Knowledge-based AI framework. We introduce Ivy, an intelligent agent that leverages an LLM and iterative refinement techniques to generate explanations that embody teleological, causal, and compositional principles. Our initial evaluation demonstrates that this approach goes beyond the typical shallow responses produced by an agent with access to unstructured text, thereby substantially improving the depth and relevance of feedback. This can potentially ensure learners develop a comprehensive understanding of skills crucial for effective problem-solving in online environments.
- Abstract(参考訳): オンライン環境における学習者の指導力の理解を支援することは、長年にわたる課題である。
エクササイズやチャットベースのエージェントは、限られた文脈での理解を評価することができるが、この課題は、学習者が手続き的知識(物事のやり方)と推論(なぜ物事が起こるのか)を掘り下げる説明を求めると拡大する。
知識に基づくAIフレームワークであるTMK(Task-Method-Knowledge)モデルを用いて、知的エージェントが学習者のスキルに関する質問を理解し、説明できる能力を大幅に向上できると仮定する。
我々は,LLMと反復精製技術を活用した知的エージェントIvyを導入し,遠隔的・因果的・構成的原理を具現化した説明を生成する。
最初の評価では、この手法は、非構造化テキストにアクセスするエージェントが生み出す典型的な浅層応答に留まらず、フィードバックの深さと関連性を大幅に改善することを示した。
これにより、学習者はオンライン環境において効果的な問題解決に不可欠なスキルを包括的に理解することが可能になる。
関連論文リスト
- Knowledge Tagging with Large Language Model based Multi-Agent System [17.53518487546791]
本稿では,従来のアルゴリズムの限界に対処するマルチエージェントシステムについて検討する。
我々は,従来の手法が抱えていた課題を克服する上で,LLMベースのマルチエージェントシステムの可能性を強調した。
論文 参考訳(メタデータ) (2024-09-12T21:39:01Z) - Integrating Cognitive AI with Generative Models for Enhanced Question Answering in Skill-based Learning [3.187381965457262]
本稿では,認知AIと生成AIを融合してこれらの課題に対処する手法を提案する。
我々は、構造化知識表現、TMK(Task-Method-Knowledge)モデルを用いて、オンライン知識ベースのAIコースで教えられたスキルをエンコードする。
論文 参考訳(メタデータ) (2024-07-28T04:21:22Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
大規模言語モデル (LLMs) は、文脈内推論の実行において広範な知識と強力な能力を持っている。
本稿では、複数の知識を組み合わせて新しい知識を推論する、文脈外知識推論(OCKR)という、文脈外推論の重要な側面に焦点を当てる。
論文 参考訳(メタデータ) (2024-06-11T15:58:59Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - Learning by Applying: A General Framework for Mathematical Reasoning via
Enhancing Explicit Knowledge Learning [47.96987739801807]
本稿では,既存のモデル(バックボーン)を明示的な知識学習によって原則的に拡張する枠組みを提案する。
LeApでは,新しい問題知識表現パラダイムで知識学習を行う。
LeApはすべてのバックボーンのパフォーマンスを改善し、正確な知識を習得し、より解釈可能な推論プロセスを実現する。
論文 参考訳(メタデータ) (2023-02-11T15:15:41Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
ナレッジグラフ(KG)による外部知識による回答選択モデル向上のアプローチを幅広く検討しています。
まず、KGの外部知識とテキスト情報との密接な相互作用を考慮し、QA文表現を学習するコンテキスト知識相互作用学習フレームワークであるナレッジアウェアニューラルネットワーク(KNN)を紹介します。
KG情報の多様性と複雑性に対処するために, カスタマイズされたグラフ畳み込みネットワーク (GCN) を介して構造情報を用いた知識表現学習を改善し, コンテキストベースおよび知識ベースの文表現を総合的に学習する コンテキスト型知識認識型アテンシブニューラルネットワーク (CKANN) を提案する。
論文 参考訳(メタデータ) (2021-04-12T05:52:20Z) - Incremental Knowledge Based Question Answering [52.041815783025186]
人間と同じように学習能力を段階的に拡張できるインクリメンタルKBQA学習フレームワークを提案します。
具体的には、破滅的な忘れ問題を克服するために、マージン希釈損失と協調選択方法からなる。
包括的な実験は、進化する知識ベースに取り組む際にその効果と効率を示す。
論文 参考訳(メタデータ) (2021-01-18T09:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。