TCKIN: A Novel Integrated Network Model for Predicting Mortality Risk in Sepsis Patients
- URL: http://arxiv.org/abs/2407.06560v1
- Date: Tue, 9 Jul 2024 05:37:50 GMT
- Title: TCKIN: A Novel Integrated Network Model for Predicting Mortality Risk in Sepsis Patients
- Authors: Fanglin Dong,
- Abstract summary: Sepsis poses a major global health threat, accounting for millions of deaths annually and significant economic costs.
This study introduces the Time-Constant KAN Integrated Network(TCKIN), an innovative model that enhances the accuracy of sepsis mortality risk predictions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sepsis poses a major global health threat, accounting for millions of deaths annually and significant economic costs. Accurate predictions of mortality risk in sepsis patients facilitate the efficient allocation of medical resources, thereby enhancing patient survival and quality of life. Through precise risk assessments, healthcare facilities can effectively distribute intensive care beds, medical equipment, and staff, ensuring high-risk patients receive timely and appropriate care. Early identification and intervention significantly decrease mortality rates and improve patient outcomes. Current methods typically utilize only one type of data--either constant, temporal, or ICD codes. This study introduces the Time-Constant KAN Integrated Network(TCKIN), an innovative model that enhances the accuracy of sepsis mortality risk predictions by integrating both temporal and constant data from electronic health records and ICD codes. Validated against the MIMIC-III and MIMIC-IV datasets, TCKIN surpasses existing machine learning and deep learning methods in accuracy, sensitivity, and specificity. Notably, TCKIN achieved AUCs of 87.76% and 88.07%, demonstrating superior capability in identifying high-risk patients. Additionally, TCKIN effectively combats the prevalent issue of data imbalance in clinical settings, improving the detection of patients at elevated risk of mortality and facilitating timely interventions. These results confirm the model's effectiveness and its potential to transform patient management and treatment optimization in clinical practice. With this advanced risk assessment tool, healthcare providers can devise more tailored treatment plans, optimize resource utilization, and ultimately enhance survival rates and quality of life for sepsis patients.
Related papers
- Fuzzy Rule based Intelligent Cardiovascular Disease Prediction using Complex Event Processing [0.8668211481067458]
Cardiovascular disease (CVDs) is a rapidly rising global concern due to unhealthy diets, lack of physical activity, and other factors.
Recent research has focused on accurate and timely disease prediction to reduce risk and fatalities.
We propose a fuzzy rule-based system for monitoring clinical data to provide real-time decision support.
arXiv Detail & Related papers (2024-09-19T16:36:24Z) - Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
This project aims to develop and assess predictive models for the timely identification of cardiac arrest incidents.
We employ machine learning algorithms like XGBoost, Gradient Boosting, and Naive Bayes, alongside a deep learning (DL) approach with Recurrent Neural Networks (RNNs)
Rigorous experimentation and validation revealed the superior performance of the RNN model.
arXiv Detail & Related papers (2024-09-03T19:18:16Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
Machine learning (ML) has revolutionized medical prognostics by integrating advanced algorithms with clinical data.
RF models demonstrate robust performance in handling high-dimensional data.
CNNs have shown exceptional accuracy in cancer detection.
LSTM networks excel in analyzing temporal data, providing accurate predictions of clinical deterioration.
arXiv Detail & Related papers (2024-08-05T09:41:34Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Event-Based Contrastive Learning for Medical Time Series [11.696805672885798]
Event-Based Contrastive Learning (EBCL) is a method for learning embeddings of heterogeneous patient data.
We demonstrate that EBCL can be used to construct models that yield improved performance on important downstream tasks.
arXiv Detail & Related papers (2023-12-16T03:50:24Z) - Enhancing Mortality Prediction in Heart Failure Patients: Exploring
Preprocessing Methods for Imbalanced Clinical Datasets [0.0]
Heart failure (HF) is a critical condition in which the accurate prediction of mortality plays a vital role in guiding patient management decisions.
We present a comprehensive preprocessing framework including scaling, outliers processing and resampling.
By leveraging appropriate preprocessing techniques and Machine Learning (ML) algorithms, we aim to improve mortality prediction performance for HF patients.
arXiv Detail & Related papers (2023-09-30T18:31:15Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
It is important that the patient discharge task addresses the nuanced trade-off between decreasing a patient's length of stay and the risk of readmission or even death following the discharge decision.
This work introduces an end-to-end general framework for capturing this trade-off to recommend optimal discharge timing decisions.
A data-driven approach is used to derive a parsimonious, discrete state space representation that captures a patient's physiological condition.
arXiv Detail & Related papers (2021-12-17T04:39:33Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.