Quantum coherence with generalized wave packets under Lorentz boost
- URL: http://arxiv.org/abs/2407.06599v1
- Date: Tue, 9 Jul 2024 07:02:45 GMT
- Title: Quantum coherence with generalized wave packets under Lorentz boost
- Authors: Arnab Mukherjee, Soham Sen, Sunandan Gangopadhyay,
- Abstract summary: We consider a single particle, apin-momentum entangled state and measure the effect of relativistic boost on quantum coherence.
The coherence of the wave function as measured by the boosted observer is studied as a function of the momentum and the boost parameter.
A more prominent loss of coherence due to relativistic boost is observed for a single particle electron than that of a neutron.
- Score: 0.10713888959520207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we consider a single particle, apin-momentum entangled state and measure the effect of relativistic boost on quantum coherence. The effect of the relativistic boost on single-particle generalized Gaussian wave packets is studied. The coherence of the wave function as measured by the boosted observer is studied as a function of the momentum and the boost parameter. Using various formulations of coherence, it is shown that in general the coherence decays with the increase in momentum of the state, as well as the boost applied to it. A more prominent loss of coherence due to relativistic boost is observed for a single particle electron than that of a neutron. The analysis is carried out with generalized Gaussian wave packet of the form $\sim p^n \exp(-\frac{p^2}{\sigma^2})$. We also obtain a bound on the unknown parameter $n$ appearing in the wave packet. It is found to have a dependence on the mass of the particle and the width of the Gaussian wave packet.
Related papers
- Quantum versus classical quenches and the broadening of wave packets [0.0]
Quantum quenches are mainly addressed but a comparison with results for the dynamics in the framework of classical statistical mechanics is useful.
A simple introduction to the concept of the Wigner function is presented which allows a better understanding of the dynamics of general wave packets.
arXiv Detail & Related papers (2024-06-17T10:47:54Z) - Quantum mechanical Gaussian wavepackets of single relativistic particles [0.0]
We study the evolutions of selected quasi- (1+1) dimensional wavepacket solutions to the Klein-Gordon equation for a relativistic charged particle in uniform motion or accelerated by a uniform electric field in Minkowski space.
We find that the minimal initial width of a wavepacket for a good Gaussian approximation in position space is about the Compton wavelength of the particle divided by its Lorentz factor at the initial moment.
arXiv Detail & Related papers (2023-09-18T01:58:31Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Quantum Correlations in Neutrino Oscillation: Coherence and Entanglement [0.0]
The origin of the flavor entanglement in neutrino oscillation is the same as that of quantum coherence.
The amount of coherence increases by $sigma_x$ due to the increase in the overlapping of the mass eigenstates.
arXiv Detail & Related papers (2020-11-25T20:34:33Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.