Towards Physics-informed Cyclic Adversarial Multi-PSF Lensless Imaging
- URL: http://arxiv.org/abs/2407.06727v1
- Date: Tue, 9 Jul 2024 10:07:28 GMT
- Title: Towards Physics-informed Cyclic Adversarial Multi-PSF Lensless Imaging
- Authors: Abeer Banerjee, Sanjay Singh,
- Abstract summary: We introduce a novel approach to multi-PSF lensless imaging, employing a dual discriminator cyclic adversarial framework.
We propose a unique generator architecture with a sparse convolutional PSF-aware auxiliary branch, coupled with a forward model integrated into the training loop.
Our method achieves comparable performance to existing PSF-agnostic generative methods for single PSF cases and demonstrates resilience to PSF changes without the need for retraining.
- Score: 0.5371337604556311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lensless imaging has emerged as a promising field within inverse imaging, offering compact, cost-effective solutions with the potential to revolutionize the computational camera market. By circumventing traditional optical components like lenses and mirrors, novel approaches like mask-based lensless imaging eliminate the need for conventional hardware. However, advancements in lensless image reconstruction, particularly those leveraging Generative Adversarial Networks (GANs), are hindered by the reliance on data-driven training processes, resulting in network specificity to the Point Spread Function (PSF) of the imaging system. This necessitates a complete retraining for minor PSF changes, limiting adaptability and generalizability across diverse imaging scenarios. In this paper, we introduce a novel approach to multi-PSF lensless imaging, employing a dual discriminator cyclic adversarial framework. We propose a unique generator architecture with a sparse convolutional PSF-aware auxiliary branch, coupled with a forward model integrated into the training loop to facilitate physics-informed learning to handle the substantial domain gap between lensless and lensed images. Comprehensive performance evaluation and ablation studies underscore the effectiveness of our model, offering robust and adaptable lensless image reconstruction capabilities. Our method achieves comparable performance to existing PSF-agnostic generative methods for single PSF cases and demonstrates resilience to PSF changes without the need for retraining.
Related papers
- A Physics-Informed Blur Learning Framework for Imaging Systems [20.105957982007283]
We propose a physics-informed PSF learning framework for imaging systems.
Our framework could achieve both high accuracy and universal applicability.
Our approach demonstrates improvements in image quality in simulation and also showcases noticeable visual quality improvements on real captured images.
arXiv Detail & Related papers (2025-02-17T02:54:14Z) - Towards Robust and Generalizable Lensless Imaging with Modular Learned Reconstruction [7.368155086339779]
State-of-the-art lensless imaging techniques combine physical modeling and neural networks.
Generalizability of learned approaches to lensless measurements of new masks has not been studied.
We use a modular learned reconstruction in which a key component is a pre-processor prior to image recovery.
arXiv Detail & Related papers (2025-02-03T06:46:39Z) - UniRestore: Unified Perceptual and Task-Oriented Image Restoration Model Using Diffusion Prior [56.35236964617809]
Image restoration aims to recover content from inputs degraded by various factors, such as adverse weather, blur, and noise.
This paper introduces UniRestore, a unified image restoration model that bridges the gap between PIR and TIR.
We propose a Complementary Feature Restoration Module (CFRM) to reconstruct degraded encoder features and a Task Feature Adapter (TFA) module to facilitate adaptive feature fusion in the decoder.
arXiv Detail & Related papers (2025-01-22T08:06:48Z) - Towards Lensless Image Deblurring with Prior-Embedded Implicit Neural Representations in the Low-Data Regime [0.5371337604556311]
This paper delves into lensless image reconstruction, a subset of computational imaging that replaces traditional lenses with computation.
We are the first to leverage implicit neural representations for lensless image deblurring, achieving reconstructions without the requirement of prior training.
arXiv Detail & Related papers (2024-11-27T10:12:29Z) - Optical Aberration Correction in Postprocessing using Imaging Simulation [17.331939025195478]
The popularity of mobile photography continues to grow.
Recent cameras have shifted some of these correction tasks from optical design to postprocessing systems.
We propose a practical method for recovering the degradation caused by optical aberrations.
arXiv Detail & Related papers (2023-05-10T03:20:39Z) - Bridging Synthetic and Real Images: a Transferable and Multiple
Consistency aided Fundus Image Enhancement Framework [61.74188977009786]
We propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation.
We also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network.
arXiv Detail & Related papers (2023-02-23T06:16:15Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
This paper presents a versatile framework for conditional image generation.
It incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression.
Our method achieves superior diverse image generation performance as compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-21T22:19:17Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.