A Physics-Informed Blur Learning Framework for Imaging Systems
- URL: http://arxiv.org/abs/2502.11382v1
- Date: Mon, 17 Feb 2025 02:54:14 GMT
- Title: A Physics-Informed Blur Learning Framework for Imaging Systems
- Authors: Liqun Chen, Yuxuan Li, Jun Dai, Jinwei Gu, Tianfan Xue,
- Abstract summary: We propose a physics-informed PSF learning framework for imaging systems.
Our framework could achieve both high accuracy and universal applicability.
Our approach demonstrates improvements in image quality in simulation and also showcases noticeable visual quality improvements on real captured images.
- Score: 20.105957982007283
- License:
- Abstract: Accurate blur estimation is essential for high-performance imaging across various applications. Blur is typically represented by the point spread function (PSF). In this paper, we propose a physics-informed PSF learning framework for imaging systems, consisting of a simple calibration followed by a learning process. Our framework could achieve both high accuracy and universal applicability. Inspired by the Seidel PSF model for representing spatially varying PSF, we identify its limitations in optimization and introduce a novel wavefront-based PSF model accompanied by an optimization strategy, both reducing optimization complexity and improving estimation accuracy. Moreover, our wavefront-based PSF model is independent of lens parameters, eliminate the need for prior knowledge of the lens. To validate our approach, we compare it with recent PSF estimation methods (Degradation Transfer and Fast Two-step) through a deblurring task, where all the estimated PSFs are used to train state-of-the-art deblurring algorithms. Our approach demonstrates improvements in image quality in simulation and also showcases noticeable visual quality improvements on real captured images.
Related papers
- Successive optimization of optics and post-processing with differentiable coherent PSF operator and field information [9.527960631238173]
We introduce a precise optical simulation model, and every operation in pipeline is differentiable.
To efficiently address various degradation, we design a joint optimization procedure that leverages field information.
arXiv Detail & Related papers (2024-12-19T07:49:40Z) - Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - Towards Physics-informed Cyclic Adversarial Multi-PSF Lensless Imaging [0.5371337604556311]
We introduce a novel approach to multi-PSF lensless imaging, employing a dual discriminator cyclic adversarial framework.
We propose a unique generator architecture with a sparse convolutional PSF-aware auxiliary branch, coupled with a forward model integrated into the training loop.
Our method achieves comparable performance to existing PSF-agnostic generative methods for single PSF cases and demonstrates resilience to PSF changes without the need for retraining.
arXiv Detail & Related papers (2024-07-09T10:07:28Z) - End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model [18.183342315517244]
We propose a new hybrid ray-tracing and wave-propagation (ray-wave) model for accurate simulation of both optical aberrations and diffractive phase modulation.
The proposed ray-wave model is fully differentiable, enabling gradient back-propagation for end-to-end co-design of refractive-diffractive lens optimization and the image reconstruction network.
arXiv Detail & Related papers (2024-06-02T18:48:22Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Generic Lithography Modeling with Dual-band Optics-Inspired Neural
Networks [52.200624127512874]
We introduce a dual-band optics-inspired neural network design that considers the optical physics underlying lithography.
Our approach yields the first published via/metal layer contour simulation at 1nm2/pixel resolution with any tile size.
We also achieve 85X simulation speedup over traditional lithography simulator with 1% accuracy loss.
arXiv Detail & Related papers (2022-03-12T08:08:50Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - Point Spread Function Estimation for Wide Field Small Aperture
Telescopes with Deep Neural Networks and Calibration Data [11.909250072362264]
The point spread function (PSF) reflects states of a telescope.
estimating PSF in any position of the whole field of view is hard, because aberrations induced by the optical system are quite complex.
We further develop our deep neural network (DNN) based PSF modelling method and show its applications in PSF estimation.
arXiv Detail & Related papers (2020-11-20T07:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.