Towards Lensless Image Deblurring with Prior-Embedded Implicit Neural Representations in the Low-Data Regime
- URL: http://arxiv.org/abs/2411.18189v1
- Date: Wed, 27 Nov 2024 10:12:29 GMT
- Title: Towards Lensless Image Deblurring with Prior-Embedded Implicit Neural Representations in the Low-Data Regime
- Authors: Abeer Banerjee, Sanjay Singh,
- Abstract summary: This paper delves into lensless image reconstruction, a subset of computational imaging that replaces traditional lenses with computation.
We are the first to leverage implicit neural representations for lensless image deblurring, achieving reconstructions without the requirement of prior training.
- Score: 0.5371337604556311
- License:
- Abstract: The field of computational imaging has witnessed a promising paradigm shift with the emergence of untrained neural networks, offering novel solutions to inverse computational imaging problems. While existing techniques have demonstrated impressive results, they often operate either in the high-data regime, leveraging Generative Adversarial Networks (GANs) as image priors, or through untrained iterative reconstruction in a data-agnostic manner. This paper delves into lensless image reconstruction, a subset of computational imaging that replaces traditional lenses with computation, enabling the development of ultra-thin and lightweight imaging systems. To the best of our knowledge, we are the first to leverage implicit neural representations for lensless image deblurring, achieving reconstructions without the requirement of prior training. We perform prior-embedded untrained iterative optimization to enhance reconstruction performance and speed up convergence, effectively bridging the gap between the no-data and high-data regimes. Through a thorough comparative analysis encompassing various untrained and low-shot methods, including under-parameterized non-convolutional methods and domain-restricted low-shot methods, we showcase the superior performance of our approach by a significant margin.
Related papers
- INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image Restoration [22.19661915697775]
We propose a novel INN-guided probabilistic diffusion algorithm for non-blind and blind image restoration.
INDIGO and BlindINDIGO combine the merits of the perfect reconstruction property of invertible neural networks (INN) with the strong generative capabilities of pre-trained diffusion models.
arXiv Detail & Related papers (2025-01-23T18:51:52Z) - Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
We reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.
We propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes.
Experiments showcase the significant superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - Enhancing Dynamic CT Image Reconstruction with Neural Fields and Optical Flow [0.0]
We show the benefits of introducing explicit motion regularizers for dynamic inverse problems based on partial differential equations.
We also compare neural fields against a grid-based solver and show that the former outperforms the latter in terms of PSNR.
arXiv Detail & Related papers (2024-06-03T13:07:29Z) - JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement [69.6035373784027]
Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models.
Previous methods may neglect the importance of a sufficient formulation of task-specific condition strategy.
We propose JoReS-Diff, a novel approach that incorporates Retinex- and semantic-based priors as the additional pre-processing condition.
arXiv Detail & Related papers (2023-12-20T08:05:57Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
Snapshot spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement.
We introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to deep unfolding method.
arXiv Detail & Related papers (2023-11-24T04:55:20Z) - Leveraging Classic Deconvolution and Feature Extraction in Zero-Shot
Image Restoration [0.4398130586098371]
Non-blind deconvolution aims to restore a sharp image from its blurred counterpart given an obtained kernel.
We propose a novel non-blind deconvolution method that leverages the power of deep learning and classic iterative deconvolution algorithms.
Our method demonstrates significant improvements in various real-world applications non-blind deconvolution tasks.
arXiv Detail & Related papers (2023-10-03T14:41:30Z) - DELAD: Deep Landweber-guided deconvolution with Hessian and sparse prior [0.22940141855172028]
We present a model for non-blind image deconvolution that incorporates the classic iterative method into a deep learning application.
We build our network based on the iterative Landweber deconvolution algorithm, which is integrated with trainable convolutional layers to enhance the recovered image structures and details.
arXiv Detail & Related papers (2022-09-30T11:15:03Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.