論文の概要: Positive-Unlabelled Learning for Improving Image-based Recommender System Explainability
- arxiv url: http://arxiv.org/abs/2407.06740v1
- Date: Tue, 9 Jul 2024 10:40:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:26:46.477944
- Title: Positive-Unlabelled Learning for Improving Image-based Recommender System Explainability
- Title(参考訳): 画像ベースレコメンダシステムの説明可能性向上のためのポジティブアンラベリング学習
- Authors: Álvaro Fernández-Campa-González, Jorge Paz-Ruza, Amparo Alonso-Betanzos, Bertha Guijarro-Berdiñas,
- Abstract要約: 本研究は,Positive-Unlabelled (PU) Learning技術を活用することで,新たな説明者トレーニングパイプラインを提案する。
実験により、このPUベースのアプローチは、6つの人気のある実世界のデータセットで最先端の非PUメソッドよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 2.9748898344267785
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Among the existing approaches for visual-based Recommender System (RS) explainability, utilizing user-uploaded item images as efficient, trustable explanations is a promising option. However, current models following this paradigm assume that, for any user, all images uploaded by other users can be considered negative training examples (i.e. bad explanatory images), an inadvertedly naive labelling assumption that contradicts the rationale of the approach. This work proposes a new explainer training pipeline by leveraging Positive-Unlabelled (PU) Learning techniques to train image-based explainer with refined subsets of reliable negative examples for each user selected through a novel user-personalized, two-step, similarity-based PU Learning algorithm. Computational experiments show this PU-based approach outperforms the state-of-the-art non-PU method in six popular real-world datasets, proving that an improvement of visual-based RS explainability can be achieved by maximizing training data quality rather than increasing model complexity.
- Abstract(参考訳): ビジュアルベースのレコメンダシステム(RS)の既存のアプローチの中で、ユーザアップロードされたアイテムイメージを効率的で信頼性の高い説明として活用することは、有望な選択肢である。
しかしながら、このパラダイムに従う現在のモデルは、どのユーザーにとっても、他のユーザーによってアップロードされたすべての画像はネガティブなトレーニング例(例えば、悪い説明画像)とみなすことができると仮定している。
本研究は,新しいユーザパーソナライズされた2段階の類似性に基づくPU学習アルゴリズムによって選択された各ユーザに対して,信頼性の高いネガティブなサンプルのサブセットを改良したサブセットで,イメージベースの説明器を訓練するために,肯定的アンラベリング(PU)学習技術を活用することによって,新たな説明器トレーニングパイプラインを提案する。
計算実験により、このPUベースのアプローチは、6つの一般的な実世界のデータセットにおいて最先端の非PUメソッドよりも優れており、モデル複雑さを増大させるのではなく、トレーニングデータ品質を最大化することで、視覚ベースのRS説明性の改善が達成できることを示した。
関連論文リスト
- Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
最適公正表現はいくつかの有用な構造特性を持つことを示す。
そこで,これらの近似問題は,凹凸プログラミング法により効率的に解けることを示す。
論文 参考訳(メタデータ) (2024-09-26T08:46:48Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [99.9389737339175]
本稿では、画像理解に特化して自己学習アプローチを強調する自己学習 on Image (STIC)を紹介する。
まず、ラベルのない画像を用いて、画像記述の好みを自己構築する。
抽出した視覚情報に対する推論をさらに自己改善するため,既存の命令調整データのごく一部をモデルに再利用する。
論文 参考訳(メタデータ) (2024-05-30T05:53:49Z) - Transformer-based Clipped Contrastive Quantization Learning for
Unsupervised Image Retrieval [15.982022297570108]
教師なし画像検索は、与えられたクエリ画像の類似画像を取得するために、任意のレベルなしに重要な視覚的特徴を学習することを目的としている。
本稿では,パッチベースの処理により局所的なコンテキストを持つTransformerを用いて,画像のグローバルコンテキストを符号化するTransClippedCLRモデルを提案する。
提案したクリップ付きコントラスト学習の結果は、バニラコントラスト学習と同一のバックボーンネットワークと比較して、すべてのデータセットで大幅に改善されている。
論文 参考訳(メタデータ) (2024-01-27T09:39:11Z) - Make Prompts Adaptable: Bayesian Modeling for Vision-Language Prompt
Learning with Data-Dependent Prior [14.232144691524528]
最近のVision-Language Pretrainedモデルは、多くの下流タスクのバックボーンとなっている。
MLEトレーニングは、トレーニングデータにおいて、コンテキストベクトルを過度に適合する画像特徴に導くことができる。
本稿では,素早い学習のためのベイズ的枠組みを提案する。
論文 参考訳(メタデータ) (2024-01-09T10:15:59Z) - Advancing Post Hoc Case Based Explanation with Feature Highlighting [0.8287206589886881]
テスト画像中の複数の明瞭な特徴部分を分離し、トレーニングデータに見られる説明事例に接続する2つの一般的なアルゴリズムを提案する。
提案手法は,実世界データにおける曖昧な分類に対して,ユーザの「正確さ」感を適切に校正することを示す。
論文 参考訳(メタデータ) (2023-11-06T16:34:48Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Self-Supervised Image Representation Learning: Transcending Masking with
Paired Image Overlay [10.715255809531268]
本稿では,自己教師型学習には適用されていない画像のオーバーレイ化という,新たな画像強調手法を提案する。
提案手法は,ダウンストリームタスクにおいて確固とした性能を示す自己教師付き学習手法であるコントラスト学習を用いて評価する。
論文 参考訳(メタデータ) (2023-01-23T07:00:04Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
我々はUniSRecという新しいユニバーサルシーケンス表現学習手法を提案する。
提案手法は、項目の関連記述テキストを用いて、異なる推薦シナリオ間で転送可能な表現を学習する。
我々のアプローチは、パラメータ効率のよい方法で、新しいレコメンデーションドメインやプラットフォームに効果的に移行できます。
論文 参考訳(メタデータ) (2022-06-13T07:21:56Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
強化学習(TMER-RL)を活用した新しい時間的メタパスガイド型説明可能な勧告を提案する。
TMER-RLは, 動的知識グラフ上での動的ユーザ・イテム進化を逐次モデル化するために, 注意機構を持つ連続項目間の強化項目・イテムパスをモデル化する。
2つの実世界のデータセットに対するTMERの大規模な評価は、最近の強いベースラインと比較して最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-11-24T04:34:26Z) - Self-supervised Co-training for Video Representation Learning [103.69904379356413]
実例に基づく情報ノイズコントラスト推定訓練に意味クラス正の付加を施すことの利点について検討する。
本稿では,インフォネッションNCEの損失を改善するための,自己指導型協調学習手法を提案する。
本研究では,2つの下流タスク(行動認識とビデオ検索)における学習表現の質を評価する。
論文 参考訳(メタデータ) (2020-10-19T17:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。