論文の概要: ERQ: Error Reduction for Post-Training Quantization of Vision Transformers
- arxiv url: http://arxiv.org/abs/2407.06794v1
- Date: Tue, 9 Jul 2024 12:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:07:16.761337
- Title: ERQ: Error Reduction for Post-Training Quantization of Vision Transformers
- Title(参考訳): ERQ:視覚変換器のトレーニング後量子化における誤差低減
- Authors: Yunshan Zhong, Jiawei Hu, You Huang, Yuxin Zhang, Rongrong Ji,
- Abstract要約: 視覚変換器(ViT)のPTQ(Post-training Quantization)は,圧縮モデルの効率性から注目されている。
本稿では,活性化と重み量子化に起因する量子化誤差を逐次低減する2段階のPTQ手法であるERQを提案する。
ERQはW3A4 ViT-Sの精度を22.36%上回っている。
- 参考スコア(独自算出の注目度): 48.740630807085566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Post-training quantization (PTQ) for vision transformers (ViTs) has garnered significant attention due to its efficiency in compressing models. However, existing methods typically overlook the intricate interdependence between quantized weight and activation, leading to considerable quantization error. In this paper, we propose ERQ, a two-step PTQ approach meticulously crafted to sequentially reduce the quantization error arising from activation and weight quantization. ERQ first introduces Activation quantization error reduction (Aqer) that strategically formulates the minimization of activation quantization error as a Ridge Regression problem, tackling it by updating weights with full-precision. Subsequently, ERQ introduces Weight quantization error reduction (Wqer) that adopts an iterative approach to mitigate the quantization error induced by weight quantization. In each iteration, an empirically derived, efficient proxy is employed to refine the rounding directions of quantized weights, coupled with a Ridge Regression solver to curtail weight quantization error. Experimental results attest to the effectiveness of our approach. Notably, ERQ surpasses the state-of-the-art GPTQ by 22.36% in accuracy for W3A4 ViT-S.
- Abstract(参考訳): 視覚変換器(ViT)のPTQ(Post-training Quantization)は,圧縮モデルの効率性から注目されている。
しかし、既存の方法は通常、量子化された重みとアクティベーションの間の複雑な相互依存性を見落とし、かなりの量子化誤差をもたらす。
本稿では,活性化と重み量子化に起因する量子化誤差を逐次低減する2段階のPTQ手法であるERQを提案する。
ERQはまず、アクティベーション量子化誤差の最小化をリッジ回帰問題として戦略的に定式化したアクティベーション量子化誤差低減(Aqer)を導入し、それをフル精度で重みを更新することで対処する。
その後、ERQはウェイト量子化による量子化誤差を軽減するために反復的なアプローチを採用するウェイト量子化誤差低減(Wqer)を導入している。
各イテレーションにおいて、量子化された重みの丸め方向を改良するために、実験的に導出された効率的なプロキシが、重みの量子化誤差を縮めるためにリッジ回帰解法と組み合わせられる。
提案手法の有効性を実験的に検証した。
特に、ERQはW3A4 ViT-Sの精度を22.36%上回っている。
関連論文リスト
- PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models [64.84734437930362]
大規模言語モデル(LLM)は、非常に低ビット(2ビット未満)の量子化に直面した場合、性能が著しく低下する。
我々はPTQ1.61と呼ばれる極低ビットのPTQ法を提案し、これによって初めて1.61ビットの重み量子化が可能となる。
実験により、PTQ1.61は極低ビット量子化において最先端の性能を達成することが示された。
論文 参考訳(メタデータ) (2025-02-18T08:04:58Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [95.32315448601241]
本稿では,RoSTE (Rotated Straight-Through-Estimator) というアルゴリズムを提案する。
RoSTEは、量子化を意識した微調整(QA-SFT)と適応的な回転戦略を組み合わせることで、アクティベーションアウトリーを減少させる。
その結果, 予測誤差は収束重みの量子化誤差と直接比例し, 最適化された回転構成により効果的に管理できることが判明した。
論文 参考訳(メタデータ) (2025-02-13T06:44:33Z) - GWQ: Gradient-Aware Weight Quantization for Large Language Models [63.89099994367657]
大規模言語モデル(LLM)は、複雑な言語タスクの解決における優れたパフォーマンスを示している。
LLMを低ビットにすることで、リソース制約のあるデバイス上で動作することが可能になり、しばしばパフォーマンスの低下につながる。
低ビット重み量子化のための最初の量子化手法である勾配対応重み量子化(GWQ)を提案する。
論文 参考訳(メタデータ) (2024-10-30T11:16:04Z) - QERA: an Analytical Framework for Quantization Error Reconstruction [12.110441045050223]
重みを極めて低い精度に定量化することへの関心が高まり、結果として生じる誤差を低ランクで高精度なエラー再構成項で相殺する。
量子化と低ランク近似の組み合わせは、アダプタベースのパラメータ効率の微調整法の両方で人気がある。
本稿では,QERA(Quantization Error Reconstruction Analysis)という解析フレームワークを定式化し,その問題に対するクローズドフォームのソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-08T13:37:34Z) - OAC: Output-adaptive Calibration for Accurate Post-training Quantization [30.115888331426515]
大規模言語モデル(LLM)を圧縮するPTQ(Post-training Quantization)技術が開発されている。
ほとんどのPTQは、キャリブレーションされた層単位で$ell$損失に基づいて量子化誤差を定式化する。
キャリブレーションプロセスにモデル出力を組み込むための出力適応型(OAC)を提案する。
論文 参考訳(メタデータ) (2024-05-23T20:01:17Z) - A2Q+: Improving Accumulator-Aware Weight Quantization [45.14832807541816]
量子化技術は一般的に、重みとアクティベーションの精度を制限することにより、ニューラルネットワークの推論コストを削減している。
最近の研究は、トレーニング中にモデルの重みを制約し、推論中にターゲットのアキュムレータビット幅を安全に使用するための量子化対応トレーニング手法である、アキュムレータ対応量子化(A2Q)を提案する。
我々は、事前訓練された浮動小数点チェックポイントから量子化重みを初期化する新しい戦略であるA2Q+を紹介する。
論文 参考訳(メタデータ) (2024-01-19T00:27:34Z) - Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
本稿では,重みの量子化誤差を低減するために,粗大かつ微細な重み分割法(CFWS)を提案する。
我々は、活性化のための最適な量子化尺度を決定するために改良されたKLメトリックを開発した。
例えば、量子化されたRepVGG-A1モデルは、わずか0.3%の精度損失を示す。
論文 参考訳(メタデータ) (2023-12-17T02:31:20Z) - Towards Accurate Post-Training Quantization for Vision Transformer [48.779346466374406]
既存のトレーニング後の量子化手法は依然として深刻な性能低下を引き起こしている。
APQ-ViTは、既存のトレーニング後の量子化手法を証明マージンによって超越している。
論文 参考訳(メタデータ) (2023-03-25T03:05:26Z) - Improving Convergence for Quantum Variational Classifiers using Weight
Re-Mapping [60.086820254217336]
近年、量子機械学習は変分量子回路(VQC)の利用が大幅に増加した。
重みを2pi$の間隔に不明瞭にマッピングするために、VQCの重み再マッピングを導入する。
修正されていないウェイトを用いて、Wineデータセットの重量再マッピングにより、テスト精度が10%向上したことを実証した。
論文 参考訳(メタデータ) (2022-12-22T13:23:19Z) - RepQ-ViT: Scale Reparameterization for Post-Training Quantization of
Vision Transformers [2.114921680609289]
視覚変換器のための新しいPTQフレームワークRepQ-ViTを提案する。
RepQ-ViTは量子化と推論プロセスを分離する。
既存の強力なベースラインを上回り、ViTの4ビットPTQの精度を有効レベルまで向上させることができる。
論文 参考訳(メタデータ) (2022-12-16T02:52:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。