Trust and Resilience in Federated Learning Through Smart Contracts Enabled Decentralized Systems
- URL: http://arxiv.org/abs/2407.06862v1
- Date: Tue, 9 Jul 2024 13:50:32 GMT
- Title: Trust and Resilience in Federated Learning Through Smart Contracts Enabled Decentralized Systems
- Authors: Lorenzo Cassano, Jacopo D'Abramo, Siraj Munir, Stefano Ferretti,
- Abstract summary: We present a study of a Federated Learning (FL) system, based on the use of decentralized architectures to ensure trust and increase reliability.
The system is based on the idea that the FL collaborators upload the (ciphered) model parameters on the Inter-Planetary File System (IPFS) and interact with a dedicated smart contract to track their behavior.
- Score: 1.9874264019909984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a study of a Federated Learning (FL) system, based on the use of decentralized architectures to ensure trust and increase reliability. The system is based on the idea that the FL collaborators upload the (ciphered) model parameters on the Inter-Planetary File System (IPFS) and interact with a dedicated smart contract to track their behavior. Thank to this smart contract, the phases of parameter updates are managed efficiently, thereby strengthening data security. We have carried out an experimental study that exploits two different methods of weight aggregation, i.e., a classic averaging scheme and a federated proximal aggregation. The results confirm the feasibility of the proposal.
Related papers
- When Swarm Learning meets energy series data: A decentralized collaborative learning design based on blockchain [10.099134773737939]
Machine learning models offer the capability to forecast future energy production or consumption.
However, legal and policy constraints within specific energy sectors present technical hurdles in utilizing data from diverse sources.
We propose adopting a Swarm Learning scheme, which replaces the centralized server with a blockchain-based distributed network.
arXiv Detail & Related papers (2024-06-07T08:42:26Z) - Enhancing Scalability and Reliability in Semi-Decentralized Federated
Learning With Blockchain: Trust Penalization and Asynchronous Functionality [0.0]
The paper focuses on enhancing the trustworthiness of participating nodes through a trust penalization mechanism.
The proposed system aims to create a fair, secure and transparent environment for collaborative machine learning without compromising data privacy.
arXiv Detail & Related papers (2023-10-30T06:05:50Z) - Enabling Quartile-based Estimated-Mean Gradient Aggregation As Baseline
for Federated Image Classifications [5.5099914877576985]
Federated Learning (FL) has revolutionized how we train deep neural networks by enabling decentralized collaboration while safeguarding sensitive data and improving model performance.
This paper introduces an innovative solution named Estimated Mean Aggregation (EMA) that not only addresses these challenges but also provides a fundamental reference point as a $mathsfbaseline$ for advanced aggregation techniques in FL systems.
arXiv Detail & Related papers (2023-09-21T17:17:28Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning (FL) is a machine learning framework where many clients collaboratively train models.
We develop a new conformal prediction method based on quantile regression and take into account privacy constraints.
arXiv Detail & Related papers (2023-06-08T11:54:58Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Reliable Federated Disentangling Network for Non-IID Domain Feature [62.73267904147804]
In this paper, we propose a novel reliable federated disentangling network, termed RFedDis.
To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling.
Our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.
arXiv Detail & Related papers (2023-01-30T11:46:34Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated learning (FL) is an emerging machine learning method that can be applied in mobile edge systems.
We show that running to the gradient descent (SGD) in such a setting can be viewed as adding a momentum-like term to the global aggregation process.
arXiv Detail & Related papers (2022-02-17T02:01:37Z) - Blockchain-based Trustworthy Federated Learning Architecture [16.062545221270337]
We present a blockchain-based trustworthy federated learning architecture.
We first design a smart contract-based data-model provenance registry to enable accountability.
We also propose a weighted fair data sampler algorithm to enhance fairness in training data.
arXiv Detail & Related papers (2021-08-16T06:13:58Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees [49.91477656517431]
Quantization-based solvers have been widely adopted in Federated Learning (FL)
No existing methods enjoy all the aforementioned properties.
We propose an intuitively-simple yet theoretically-simple method based on SIGNSGD to bridge the gap.
arXiv Detail & Related papers (2020-02-25T15:12:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.