論文の概要: End-To-End Causal Effect Estimation from Unstructured Natural Language Data
- arxiv url: http://arxiv.org/abs/2407.07018v1
- Date: Tue, 9 Jul 2024 16:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 17:17:48.530593
- Title: End-To-End Causal Effect Estimation from Unstructured Natural Language Data
- Title(参考訳): 非構造化自然言語データによる終端因果効果の推定
- Authors: Nikita Dhawan, Leonardo Cotta, Karen Ullrich, Rahul G. Krishnan, Chris J. Maddison,
- Abstract要約: 本研究では,大規模言語モデル(LLM)を用いて,多種多様なテキストデータをマイニングして,安価な因果効果推定を行う方法を示す。
NATURALは,LLMを用いて構築され,非構造化テキストのデータセット上で動作する因果効果推定器である。
この結果から、非構造化テキストデータは因果効果情報の豊富な情報源であり、NATURALはこのリソースを利用するための自動パイプラインへの第一歩であることを示唆した。
- 参考スコア(独自算出の注目度): 23.484226791467478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowing the effect of an intervention is critical for human decision-making, but current approaches for causal effect estimation rely on manual data collection and structuring, regardless of the causal assumptions. This increases both the cost and time-to-completion for studies. We show how large, diverse observational text data can be mined with large language models (LLMs) to produce inexpensive causal effect estimates under appropriate causal assumptions. We introduce NATURAL, a novel family of causal effect estimators built with LLMs that operate over datasets of unstructured text. Our estimators use LLM conditional distributions (over variables of interest, given the text data) to assist in the computation of classical estimators of causal effect. We overcome a number of technical challenges to realize this idea, such as automating data curation and using LLMs to impute missing information. We prepare six (two synthetic and four real) observational datasets, paired with corresponding ground truth in the form of randomized trials, which we used to systematically evaluate each step of our pipeline. NATURAL estimators demonstrate remarkable performance, yielding causal effect estimates that fall within 3 percentage points of their ground truth counterparts, including on real-world Phase 3/4 clinical trials. Our results suggest that unstructured text data is a rich source of causal effect information, and NATURAL is a first step towards an automated pipeline to tap this resource.
- Abstract(参考訳): 介入の効果を知ることは、人間の意思決定にとって重要であるが、因果的効果推定の現在のアプローチは、因果的仮定にかかわらず、手動のデータ収集と構造化に依存している。
これにより、研究のコストと完成までの時間の両方が増大する。
本研究では,大規模言語モデル(LLM)を用いて,適切な因果推定条件下での安価な因果効果推定を行うために,多種多様な観測テキストデータをいかに大規模にマイニングできるかを示す。
NATURALは,LLMを用いて構築され,非構造化テキストのデータセット上で動作する因果効果推定器である。
我々の推定器は、古典的因果効果推定器の計算を支援するために、LLM条件分布(テキストデータから導かれる変数)を用いる。
データキュレーションの自動化やLLMの活用など,このアイデアを実現するための技術的課題を数多く克服しています。
我々は6つの(合成と4つの実の)観測データセットを作成し、それに対応する真実をランダム化トライアルの形で組み合わせ、パイプラインの各ステップを体系的に評価した。
ナトゥラル推定器は顕著な性能を示し、実世界の第3/4相臨床試験を含め、根本的真理の3ポイント以内の因果効果を推定する。
この結果から、非構造化テキストデータは因果効果情報の豊富な情報源であり、NATURALはこのリソースを利用するための自動パイプラインへの第一歩であることを示唆した。
関連論文リスト
- Marginal Causal Flows for Validation and Inference [3.547529079746247]
複雑なデータから得られる結果に対する介入の限界因果効果を調べることは依然として困難である。
Frugal Flowsは、正規化フローを使用してデータ生成過程を柔軟に学習する新しい確率ベース機械学習モデルである。
シミュレーションと実世界の両方のデータセットで実験を行った。
論文 参考訳(メタデータ) (2024-11-02T16:04:57Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - Do Finetti: On Causal Effects for Exchangeable Data [45.96632286841583]
データをi.i.d.に含まない環境での因果効果の推定について検討する。
我々は、独立因果関係の仮定を満たす交換可能なデータに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-29T07:31:18Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - A Pretrainer's Guide to Training Data: Measuring the Effects of Data
Age, Domain Coverage, Quality, & Toxicity [84.6421260559093]
この研究は、テキスト事前学習に関する文書化されていない直観を検証、定量化、公開するための最大の実験である。
以上の結果から,トレーニングデータをフィルタリングする一大ソリューションが存在しないことが示唆された。
論文 参考訳(メタデータ) (2023-05-22T15:57:53Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - Improving Data-driven Heterogeneous Treatment Effect Estimation Under
Structure Uncertainty [13.452510519858995]
ヘテロジニアス処理効果(HTE)推定(英:heregeneous treatment effect, HTE)は、意思決定や政策実施において重要な要素である。
本研究では,HTE推定のための特徴値を考慮した特徴選択手法を開発し,データから因果構造の関連部分を学習する。
論文 参考訳(メタデータ) (2022-06-25T16:26:35Z) - Causal Effect Estimation using Variational Information Bottleneck [19.6760527269791]
因果推論とは、介入が適用されるときの因果関係における因果効果を推定することである。
変分情報ボトルネック(CEVIB)を用いて因果効果を推定する手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T13:46:12Z) - Multi-Source Causal Inference Using Control Variates [81.57072928775509]
本稿では,複数のデータソースから因果効果を推定するアルゴリズムを提案する。
理論的には、これはATE推定値の分散を減少させる。
このフレームワークを結果選択バイアスの下で観測データからの推論に適用する。
論文 参考訳(メタデータ) (2021-03-30T21:20:51Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z) - Towards unique and unbiased causal effect estimation from data with
hidden variables [0.0]
観測データから因果効果を推定することは重要であるが、難しい課題である。
本研究では,隠れ変数を持つデータから因果効果のユニークかつ偏りのない推定を行う手法を提案する。
定理に基づいて、隠れ変数を持つデータから適切な調整セットを見つけるための2つのアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2020-02-24T06:42:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。