Nash CoT: Multi-Path Inference with Preference Equilibrium
- URL: http://arxiv.org/abs/2407.07099v2
- Date: Mon, 4 Nov 2024 11:15:28 GMT
- Title: Nash CoT: Multi-Path Inference with Preference Equilibrium
- Authors: Ziqi Zhang, Cunxiang Wang, Xiong Xiao, Yue Zhang, Donglin Wang,
- Abstract summary: Chain of thought (CoT) is a reasoning framework that can enhance the performance of Large Language Models (LLMs) on complex inference tasks.
There is no optimal setting for the number of inference paths to obtain better results.
We evaluate Nash CoT across various inference tasks, including Arabic Reasoning, Commonsense Question Answering, and Symbolic Inference.
- Score: 40.50811042423615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chain of thought (CoT) is a reasoning framework that can enhance the performance of Large Language Models (LLMs) on complex inference tasks. In particular, among various studies related to CoT, multi-path inference stands out as a simple yet effective improvement. However, there is no optimal setting for the number of inference paths. Therefore, we have to increase the number of inference paths to obtain better results, which in turn increases the inference cost. To address this limitation, we can utilize question-related role templates to guide LLMs into relevant roles, thereby increasing the possibility of correct inferences for each path and further reducing dependence on the number of inference paths while improving reasoning accuracy. However, placing LLMs into specific roles may reduce their reasoning diversity and performance on a few tasks where role dependence is low. To alleviate the excessive immersion of the LLM into a specific role, we propose Nash CoT by constructing a competitive system on each path that balances the generation from role-specific LLMs' and the general LLMs' generation, thereby ensuring both effective role adoption and diversity in LLM generation further maintaining the performance of multi-path inference while reducing the requirement of the number of inference paths. We evaluate Nash CoT across various inference tasks, including Arabic Reasoning, Commonsense Question Answering, and Symbolic Inference, achieving results that are comparable to or better than those of multi-path CoT with the equal number of inference paths.
Related papers
- Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook.
Fine-tuning language models (LLMs) leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance.
This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT.
arXiv Detail & Related papers (2024-06-13T14:07:02Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - ERA-CoT: Improving Chain-of-Thought through Entity Relationship Analysis [20.24915029448926]
Large language models (LLMs) have achieved commendable accomplishments in various natural language processing tasks.
These challenges arise from the presence of implicit relationships that demand multi-step reasoning.
We propose a novel approach ERA-CoT, which aids LLMs in understanding context by capturing relationships between entities.
arXiv Detail & Related papers (2024-03-11T17:18:53Z) - Identifying Factual Inconsistencies in Summaries: Grounding LLM Inference via Task Taxonomy [48.29181662640212]
Factual inconsistencies pose a significant hurdle for the faithful summarization by generative models.
We consolidate key error types of inconsistent facts in summaries, and incorporate them to facilitate both the zero-shot and supervised paradigms of LLMs.
arXiv Detail & Related papers (2024-02-20T08:41:23Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - CoF-CoT: Enhancing Large Language Models with Coarse-to-Fine
Chain-of-Thought Prompting for Multi-domain NLU Tasks [46.862929778121675]
Chain-of-Thought prompting is popular in reasoning tasks, but its application to Natural Language Understanding (NLU) is under-explored.
Motivated by multi-step reasoning of Large Language Models (LLMs), we propose Coarse-to-Fine Chain-of-Thought (CoF-CoT) approach.
arXiv Detail & Related papers (2023-10-23T06:54:51Z) - Provable Benefits of Multi-task RL under Non-Markovian Decision Making
Processes [56.714690083118406]
In multi-task reinforcement learning (RL) under Markov decision processes (MDPs), the presence of shared latent structures has been shown to yield significant benefits to the sample efficiency compared to single-task RL.
We investigate whether such a benefit can extend to more general sequential decision making problems, such as partially observable MDPs (POMDPs) and more general predictive state representations (PSRs)
We propose a provably efficient algorithm UMT-PSR for finding near-optimal policies for all PSRs, and demonstrate that the advantage of multi-task learning manifests if the joint model class of PSR
arXiv Detail & Related papers (2023-10-20T14:50:28Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
Large language models (LLMs) can achieve highly effective performance on various reasoning tasks by incorporating step-by-step chain-of-thought (CoT) prompting as demonstrations.
We introduce Iter-CoT (Iterative bootstrapping in Chain-of-Thoughts Prompting), an iterative bootstrapping approach for selecting exemplars and generating reasoning chains.
arXiv Detail & Related papers (2023-04-23T13:54:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.