Atom interferometry in an Einstein Elevator
- URL: http://arxiv.org/abs/2407.07183v1
- Date: Tue, 9 Jul 2024 18:53:11 GMT
- Title: Atom interferometry in an Einstein Elevator
- Authors: Celia Pelluet, Romain Arguel, Martin Rabault, Vincent Jarlaud, Clement Metayer, Brynle Barrett, Philippe Bouyer, Baptiste Battelier,
- Abstract summary: We present a new approach in which atom interferometry is performed in a laboratory-scale Einstein Elevator.
With a total interrogation time of $2T = 200$ ms, we demonstrate an acceleration sensitivity of $6 times 10-7$ m/s$2$ per shot.
These represent state-of-the-art results achieved in microgravity and further demonstrates the potential of quantum inertial sensors in Space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in atom interferometry have led to the development of quantum inertial sensors with outstanding performance in terms of sensitivity, accuracy, and long-term stability. For ground-based implementations, these sensors are ultimately limited by the free-fall height of atomic fountains required to interrogate the atoms over extended timescales. This limitation can be overcome in Space and in unique ``microgravity'' facilities such as drop towers or free-falling aircraft. These facilities require large investments, long development times, and place stringent constraints on instruments that further limit their widespread use. The available ``up time'' for experiments is also quite low, making extended studies challenging. In this work, we present a new approach in which atom interferometry is performed in a laboratory-scale Einstein Elevator. Our experiment is mounted to a moving platform that mimics the vertical free-fall trajectory every 13.5 seconds. With a total interrogation time of $2T = 200$ ms, we demonstrate an acceleration sensitivity of $6 \times 10^{-7}$ m/s$^{2}$ per shot, limited primarily by the temperature of our atomic samples. We further demonstrate the capability to perform long-term statistical studies by operating the Einstein Elevator over several days with high reproducibility. These represent state-of-the-art results achieved in microgravity and further demonstrates the potential of quantum inertial sensors in Space. Our microgravity platform is both an alternative to large atomic fountains and a versatile facility to prepare future Space missions.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Advances in Atom Interferometry and their Impacts on the Performance of Quantum Accelerometers On-board Future Satellite Gravity Missions [0.0]
Recent advances in cold atom interferometry have cleared the path for space applications of quantum inertial sensors.
A comprehensive in-orbit model is developed for a Mach-Zehnder-type cold-atom accelerometer.
arXiv Detail & Related papers (2024-04-16T11:15:41Z) - Interferometry of Atomic Matter Waves in the Cold Atom Lab onboard the
International Space Station [0.2551676739403148]
NASA's Cold Atom Lab operates onboard the International Space Station as a multi-user facility for studies of ultracold atoms.
Atom interferometers are a class of quantum sensors which can use freely falling gases of atoms cooled to sub-photon-recoil temperatures.
A three-pulse Mach-Zehnder interferometer was studied to understand limitations from the influence of ISS vibrations.
Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time.
arXiv Detail & Related papers (2024-02-22T16:41:00Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Enabling Astronaut Self-Scheduling using a Robust Advanced Modelling and
Scheduling system: an assessment during a Mars analogue mission [44.621922701019336]
We study the usage of a computer decision-support tool by a crew of analog astronauts.
The proposed tool, called Romie, belongs to the new category of Robust Advanced Modelling and Scheduling (RAMS) systems.
arXiv Detail & Related papers (2023-01-14T21:10:05Z) - Decoherence from Long-Range Forces in Atom Interferometry [0.0]
We study the effects on atomic coherence from hard-to-screen backgrounds due to baths of ambient particles with long-range forces.
We find that these potential backgrounds are likely negligible for the next generation of interferometers.
arXiv Detail & Related papers (2022-05-06T04:24:11Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Feasibility considerations for free-fall tests of gravitational
decoherence [0.0]
Space offers exciting opportunities to test the foundations of quantum physics using macroscopic quantum superpositions.
It has been proposed to perform such tests in a dedicated space mission (MAQRO) using matter-wave interferometry with massive test particles.
We will discuss limitations of such non-interferometric experiments due to the limited number of data points achievable during a mission lifetime.
arXiv Detail & Related papers (2021-11-02T10:35:46Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Spin-mechanics with nitrogen-vacancy centers and trapped particles [0.0]
We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state.
Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that will enable these systems to unleash their full potential.
arXiv Detail & Related papers (2021-04-20T20:43:24Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.