論文の概要: Using Galaxy Evolution as Source of Physics-Based Ground Truth for Generative Models
- arxiv url: http://arxiv.org/abs/2407.07229v1
- Date: Tue, 9 Jul 2024 21:01:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:31:06.411655
- Title: Using Galaxy Evolution as Source of Physics-Based Ground Truth for Generative Models
- Title(参考訳): 生成モデルのための物理に基づく地層真実の源としての銀河進化の利用
- Authors: Yun Qi Li, Tuan Do, Evan Jones, Bernie Boscoe, Kevin Alfaro, Zooey Nguyen,
- Abstract要約: 我々は条件付き拡散軸確率モデル(DDPM)と条件付き変分オートエンコーダ(CVAE)を構築する。
これは、これらの生成モデルを物理的に動機付けられたメトリクスを用いて探索する最初の研究の1つである。
どちらのモデルも、人間の評価に基づいて、同等の現実的な銀河を生成することが分かっていますが、我々の物理学に基づくメトリクスは、生成モデルの強みと弱みをよりよく識別することができます。
- 参考スコア(独自算出の注目度): 0.9701233658865522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models producing images have enormous potential to advance discoveries across scientific fields and require metrics capable of quantifying the high dimensional output. We propose that astrophysics data, such as galaxy images, can test generative models with additional physics-motivated ground truths in addition to human judgment. For example, galaxies in the Universe form and change over billions of years, following physical laws and relationships that are both easy to characterize and difficult to encode in generative models. We build a conditional denoising diffusion probabilistic model (DDPM) and a conditional variational autoencoder (CVAE) and test their ability to generate realistic galaxies conditioned on their redshifts (galaxy ages). This is one of the first studies to probe these generative models using physically motivated metrics. We find that both models produce comparable realistic galaxies based on human evaluation, but our physics-based metrics are better able to discern the strengths and weaknesses of the generative models. Overall, the DDPM model performs better than the CVAE on the majority of the physics-based metrics. Ultimately, if we can show that generative models can learn the physics of galaxy evolution, they have the potential to unlock new astrophysical discoveries.
- Abstract(参考訳): 画像を生成する生成モデルは、科学分野における発見を前進させる大きな可能性があり、高次元の出力を定量化できるメトリクスを必要とする。
本研究では、銀河画像などの天体物理学データを用いて、人間による判断に加えて、物理を動機とした地上の真理を付加した生成モデルを検証できることを提案する。
例えば、宇宙の銀河は数十億年にわたって形成され変化し、物理的法則や関係に従えば容易に特徴づけられ、生成モデルの符号化が困難である。
我々は,条件付き拡散確率モデル (DDPM) と条件付き変分オートエンコーダ (CVAE) を構築し,その赤方偏移(ギャラクシー年代)に基づいて現実的な銀河を生成する能力を検証した。
これは、これらの生成モデルを物理的に動機付けられたメトリクスを用いて探索する最初の研究の1つである。
どちらのモデルも、人間の評価に基づいて、同等の現実的な銀河を生成することが分かっていますが、我々の物理学に基づくメトリクスは、生成モデルの強みと弱みをよりよく識別することができます。
DDPMモデルは、物理ベースの指標の大部分がCVAEよりも優れている。
最終的に、生成モデルが銀河進化の物理を学べることを示すことができれば、彼らは新しい天体物理学的な発見を解き放つ可能性がある。
関連論文リスト
- How Far is Video Generation from World Model: A Physical Law Perspective [101.24278831609249]
OpenAIのSoraは、物理法則に準拠した世界モデルを開発するためのビデオ生成の可能性を強調している。
しかし、ビデオ生成モデルが人間の先行しない視覚データから純粋にそのような法則を発見する能力に疑問を投げかけることができる。
本研究は,3つの主要なシナリオ – 分布内,分布外,一般化 – について評価する。
論文 参考訳(メタデータ) (2024-11-04T18:53:05Z) - Towards World Simulator: Crafting Physical Commonsense-Based Benchmark for Video Generation [51.750634349748736]
テキスト・ツー・ビデオ(T2V)モデルは複雑なプロンプトの可視化に大きく貢献している。
しかし、直感的な物理を正確に表現するこれらのモデルの能力はほとんど解明されていない。
本稿では,T2V生成における物理コモンセンスの正しさを評価するためにPhyGenBenchを導入する。
論文 参考訳(メタデータ) (2024-10-07T17:56:04Z) - VideoPhy: Evaluating Physical Commonsense for Video Generation [93.28748850301949]
生成したビデオが現実世界のアクティビティの物理的常識に従うかどうかを評価するためのベンチマークであるVideoPhyを提示する。
そして、さまざまな最先端のテキスト・ビデオ生成モデルからキャプションに条件付けされたビデオを生成する。
人間の評価では、既存のモデルには、与えられたテキストプロンプトに付着したビデオを生成する能力が欠けていることが判明した。
論文 参考訳(メタデータ) (2024-06-05T17:53:55Z) - Can AI Understand Our Universe? Test of Fine-Tuning GPT by Astrophysical Data [6.0108108767559525]
ChatGPTはここ数ヶ月で最も話題になっているコンセプトで、プロフェッショナルと一般大衆の両方を魅了している。
本稿では、銀河、クエーサー、星、ガンマ線バースト(GRBs)、ブラックホール(BHs)の観測から得られた天文学データを用いて、生成前訓練変圧器モデル(GPT)を微調整する。
我々は、LLMが科学的研究において証明された有効性を示す試験として、これを成功とみなしている。
論文 参考訳(メタデータ) (2024-04-14T20:52:19Z) - Towards solving model bias in cosmic shear forward modeling [2.967246997200238]
弱い重力レンズは、宇宙のせん断と呼ばれる銀河形態のわずかなせん断を発生させる。
楕円度測定の統計に基づくせん断推定の現代の技術は、楕円度が任意の銀河の光のプロファイルに対して適切に定義された量ではないという事実に悩まされている。
生成モデルが銀河形態を捉えるハイブリッド物理・ディープラーニング階層ベイズモデルにより、現実的な銀河上でのせん断の偏りのない推定を復元できることを示す。
論文 参考訳(メタデータ) (2022-10-28T16:23:49Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Learning cosmology and clustering with cosmic graphs [0.0]
我々は、CAMELSプロジェクトの最先端の流体力学シミュレーションから数千の銀河カタログのディープラーニングモデルを訓練する。
まず、GNNが数パーセントの精度で銀河カタログのパワースペクトルを計算することができることを示す。
次に、GNNをトレーニングし、銀河場レベルで可能性のない推論を行う。
論文 参考訳(メタデータ) (2022-04-28T18:00:02Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Realistic galaxy image simulation via score-based generative models [0.0]
本研究では,銀河の観測を模倣した現実的かつ偽のイメージを生成するために,スコアベースの生成モデルが利用できることを示す。
主観的には、生成された銀河は実際のデータセットのサンプルと比較すると非常に現実的である。
論文 参考訳(メタデータ) (2021-11-02T16:27:08Z) - Machine Learning for Discovering Effective Interaction Kernels between
Celestial Bodies from Ephemerides [10.77689830299308]
我々は、データ駆動学習アプローチを用いて、太陽系の天体の運動の安定的で正確なモデルを導出する。
太陽系の主要天体を相互に相互作用する物質としてモデル化することで、我々の学習モデルは極めて正確なダイナミクスを生成する。
我々のモデルは、特に火星、水星、月の近日点沈み込みを再現するという点において、観測データに対する統一的な説明を提供することができる。
論文 参考訳(メタデータ) (2021-08-26T16:30:59Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。