論文の概要: Lifestyle-Informed Personalized Blood Biomarker Prediction via Novel Representation Learning
- arxiv url: http://arxiv.org/abs/2407.07277v1
- Date: Tue, 9 Jul 2024 23:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:21:11.945662
- Title: Lifestyle-Informed Personalized Blood Biomarker Prediction via Novel Representation Learning
- Title(参考訳): 新しい表現学習によるライフスタイルインフォームド・パーソナライズドバイオマーカーの予測
- Authors: A. Ali Heydari, Naghmeh Rezaei, Javier L. Prieto, Shwetak N. Patel, Ahmed A. Metwally,
- Abstract要約: 今後,血液マーカーの値を予測する新しい枠組みを提案する。
提案手法は,生物マーカーと生活習慣因子の複雑な関係を捉える類似性に基づく埋め込み空間を学習する。
- 参考スコア(独自算出の注目度): 7.845988771273181
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Blood biomarkers are an essential tool for healthcare providers to diagnose, monitor, and treat a wide range of medical conditions. Current reference values and recommended ranges often rely on population-level statistics, which may not adequately account for the influence of inter-individual variability driven by factors such as lifestyle and genetics. In this work, we introduce a novel framework for predicting future blood biomarker values and define personalized references through learned representations from lifestyle data (physical activity and sleep) and blood biomarkers. Our proposed method learns a similarity-based embedding space that captures the complex relationship between biomarkers and lifestyle factors. Using the UK Biobank (257K participants), our results show that our deep-learned embeddings outperform traditional and current state-of-the-art representation learning techniques in predicting clinical diagnosis. Using a subset of UK Biobank of 6440 participants who have follow-up visits, we validate that the inclusion of these embeddings and lifestyle factors directly in blood biomarker models improves the prediction of future lab values from a single lab visit. This personalized modeling approach provides a foundation for developing more accurate risk stratification tools and tailoring preventative care strategies. In clinical settings, this translates to the potential for earlier disease detection, more timely interventions, and ultimately, a shift towards personalized healthcare.
- Abstract(参考訳): 血液バイオマーカーは、医療提供者にとって、幅広い医療状況の診断、モニタリング、治療に欠かせないツールである。
現在の基準値と推奨範囲は、しばしば人口レベルの統計に依存しており、ライフスタイルや遺伝学などの要因によって引き起こされる個人間の変動の影響を適切に考慮していない。
本研究では,将来の血液バイオマーカー値を予測するための新しい枠組みを導入し,ライフスタイルデータ(身体活動と睡眠)と血液バイオマーカーから学習した表現を通して,個人化された参照を定義する。
提案手法は,生物マーカーと生活習慣因子の複雑な関係を捉える類似性に基づく埋め込み空間を学習する。
UK Biobank (257Kの参加者) を用いて, 本研究の深層埋め込みは, 臨床診断の予測において, 従来および現在の最先端の表現学習技術より優れていることを示した。
追跡訪問を行った6440人の英国バイオバンクのサブセットを用いて、血液バイオマーカーモデルにこれらの埋め込みとライフスタイル要素を直接組み込むことで、実験室での1回の訪問から将来の検査値を予測することができることを検証した。
このパーソナライズされたモデリングアプローチは、より正確なリスク階層化ツールを開発し、予防ケア戦略を調整するための基盤を提供する。
臨床環境では、これは早期の疾患検出、よりタイムリーな介入、そして究極的にはパーソナライズされたヘルスケアへの移行の可能性を意味している。
関連論文リスト
- Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Spatio-Temporal Similarity Measure based Multi-Task Learning for
Predicting Alzheimer's Disease Progression using MRI Data [18.669489433316127]
本稿では,アルツハイマー病の進行を効果的に予測するための,新しい時間的類似度尺度に基づくマルチタスク学習手法を提案する。
また, バイオマーカー間の関係の変化を識別するために, 縦方向の安定性の選択を行うことも可能である。
本研究では,皮質体積および表面積の相乗的劣化指標が認知的予測に有意な影響を及ぼすことを証明した。
論文 参考訳(メタデータ) (2023-11-06T21:59:19Z) - Hierarchical Pretraining for Biomedical Term Embeddings [4.69793648771741]
階層データに基づく新しいバイオメディカル用語表現モデルであるHiPrBERTを提案する。
HiPrBERTは階層的な情報からペアワイズ距離を効果的に学習し,さらにバイオメディカルな応用に極めて有用な埋め込みを実現できることを示す。
論文 参考訳(メタデータ) (2023-07-01T08:16:00Z) - Clinically Labeled Contrastive Learning for OCT Biomarker Classification [12.633032175875865]
本稿では,臨床データから抽出可能なラベルに基づく医用画像のコントラスト学習手法を提案する。
バイオマーカーラベルを使わずに,臨床データを擬似ラベルとして利用することで,この関係を活用できる。
バイオマーカー検出AUROCでは,最大5%の性能向上が見られた。
論文 参考訳(メタデータ) (2023-05-24T13:51:48Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
NHSは低リスクの全ての患者に会うのが難しくなっているが、これはOA患者に限らない。
膝関節疾患の診断と治療経過のモニタリングのためのバイオマーカー自動同定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T16:47:42Z) - Clinical Contrastive Learning for Biomarker Detection [15.510581400494207]
臨床とバイオマーカーデータの関係を利用して,バイオマーカー分類の性能を向上する。
これは、バイオマーカーラベルを使わずに、大量の臨床データを擬似ラベルとして活用することで達成される。
本手法は, バイオマーカー検出の精度を最大5%向上させることで, 自己監督手法の精度を最大で5%向上させることを示した。
論文 参考訳(メタデータ) (2022-11-09T18:29:56Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Label scarcity in biomedicine: Data-rich latent factor discovery
enhances phenotype prediction [102.23901690661916]
低次元の埋め込み空間は、健康指標、ライフスタイル、および人口動態の予測をデータスカース化するために、英国バイオバンクの人口データセットから導出することができる。
半超越的アプローチによるパフォーマンス向上は、おそらく様々な医学データサイエンス応用にとって重要な要素となるだろう。
論文 参考訳(メタデータ) (2021-10-12T16:25:50Z) - The Future will be Different than Today: Model Evaluation Considerations
when Developing Translational Clinical Biomarker [4.549866091318765]
従来のクロスバリデーション(cv)方式の代わりに,LOSO(Left-one-Study-out)を用いた評価戦略を提案する。
バイオマーカーの効果を推定するためのK-fold vs. LOSO cvの性能を示すために,臨床実験およびシミュレーション研究のデータを活用した。
論文 参考訳(メタデータ) (2021-07-13T19:36:25Z) - Personalized pathology test for Cardio-vascular disease: Approximate
Bayesian computation with discriminative summary statistics learning [48.7576911714538]
近似計算を用いて生物学的に有意なパラメータを推定するための血小板沈着モデルと推論手法を提案する。
この研究は、CVDの検出と治療のためのパーソナライズされた病理検査の先例のない機会を開く。
論文 参考訳(メタデータ) (2020-10-13T15:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。