論文の概要: Causal Discovery in Semi-Stationary Time Series
- arxiv url: http://arxiv.org/abs/2407.07291v1
- Date: Wed, 10 Jul 2024 00:55:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:21:11.925061
- Title: Causal Discovery in Semi-Stationary Time Series
- Title(参考訳): 半定常時系列における因果発見
- Authors: Shanyun Gao, Raghavendra Addanki, Tong Yu, Ryan A. Rossi, Murat Kocaoglu,
- Abstract要約: 本研究では,観測時系列における因果関係を発見するための制約に基づく非パラメトリックアルゴリズムを提案する。
このアルゴリズムは離散時系列における因果関係の同定に有効であることを示す。
- 参考スコア(独自算出の注目度): 32.424281626708336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering causal relations from observational time series without making the stationary assumption is a significant challenge. In practice, this challenge is common in many areas, such as retail sales, transportation systems, and medical science. Here, we consider this problem for a class of non-stationary time series. The structural causal model (SCM) of this type of time series, called the semi-stationary time series, exhibits that a finite number of different causal mechanisms occur sequentially and periodically across time. This model holds considerable practical utility because it can represent periodicity, including common occurrences such as seasonality and diurnal variation. We propose a constraint-based, non-parametric algorithm for discovering causal relations in this setting. The resulting algorithm, PCMCI$_{\Omega}$, can capture the alternating and recurring changes in the causal mechanisms and then identify the underlying causal graph with conditional independence (CI) tests. We show that this algorithm is sound in identifying causal relations on discrete time series. We validate the algorithm with extensive experiments on continuous and discrete simulated data. We also apply our algorithm to a real-world climate dataset.
- Abstract(参考訳): 定常的な仮定をせずに観測時系列から因果関係を明らかにすることは重要な課題である。
実際には、小売業、交通システム、医学など、多くの分野においてこの課題は一般的である。
ここでは、この問題を非定常時系列のクラスとして考える。
半定常時系列と呼ばれるこの種の時系列の構造因果モデル(SCM)は、有限個の異なる因果機構が連続的に周期的に起こることを示す。
このモデルは、季節性や日内変動といった一般的な現象を含む周期性を表現することができるため、かなりの実用性を持っている。
本稿では,制約に基づく非パラメトリックアルゴリズムを提案する。
結果のアルゴリズム PCMCI$_{\Omega}$ は因果関係の交互変化を捉え、条件独立性(CI)テストで基礎となる因果グラフを同定する。
このアルゴリズムは離散時系列における因果関係の同定に有効であることを示す。
連続的および離散的シミュレーションデータに対する広範な実験により,本アルゴリズムの有効性を検証した。
また、我々のアルゴリズムを実世界の気候データセットに適用する。
関連論文リスト
- Causal Discovery-Driven Change Point Detection in Time Series [32.424281626708336]
時系列における変化点検出は、時系列の確率分布が変化する時間を特定する。
実践的な応用では、時系列の特定の構成要素にのみ興味を持ち、その分布の急激な変化を探求する。
論文 参考訳(メタデータ) (2024-07-10T00:54:42Z) - Understanding Time Series Anomaly State Detection through One-Class
Classification [13.822504564241454]
本稿では,一級分類(OCC)による時系列異常検出問題の再検討と定義を試みる。
まず、プロセスと仮説テストを用いて「時系列異常状態検出問題」とその対応する異常を厳密に定義する。
そして、時系列分類データセットを用いて、問題に対応する人工データセットを構築する。
我々は38個の異常検出アルゴリズムをコンパイルし、いくつかのアルゴリズムを修正してこの問題に対処する。
論文 参考訳(メタデータ) (2024-02-03T03:43:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Causal discovery for time series with constraint-based model and PMIME
measure [0.0]
本稿では,因果探索アルゴリズムと情報理論に基づく測度を組み合わせた時系列データにおける因果関係の発見手法を提案する。
提案手法を複数のシミュレーションデータセット上で評価し,有望な結果を示す。
論文 参考訳(メタデータ) (2023-05-31T09:38:50Z) - Causal Discovery from Subsampled Time Series with Proxy Variables [19.699813624529813]
本稿では,サブサンプリング時系列から因果構造全体を同定する制約に基づくアルゴリズムを提案する。
我々のアルゴリズムは非パラメトリックであり、完全な因果同定を実現することができる。
論文 参考訳(メタデータ) (2023-05-09T08:58:02Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
観測データと実験データの任意の組み合わせから最適境界を近似する有効なモンテカルロアルゴリズムを開発した。
我々のアルゴリズムは、合成および実世界のデータセットに基づいて広範囲に検証されている。
論文 参考訳(メタデータ) (2021-10-12T02:21:30Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Normalized multivariate time series causality analysis and causal graph
reconstruction [0.0]
因果分析は科学の中心にある重要な問題であり、データサイエンスと機械学習において特に重要である。
この研究は、情報フローに基づく2変数時間系列因果推論の長期一般化とともに、この作業ラインをコミュニティに紹介する。
結果として得られる公式は透明であり、計算的に非常に効率的なアルゴリズムとして実装することができる。
論文 参考訳(メタデータ) (2021-04-23T00:46:35Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。