論文の概要: Deformation-Recovery Diffusion Model (DRDM): Instance Deformation for Image Manipulation and Synthesis
- arxiv url: http://arxiv.org/abs/2407.07295v2
- Date: Sun, 21 Jul 2024 04:48:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 00:31:58.268784
- Title: Deformation-Recovery Diffusion Model (DRDM): Instance Deformation for Image Manipulation and Synthesis
- Title(参考訳): 変形-回復拡散モデル(DRDM):画像操作と合成のためのインスタンス変形
- Authors: Jian-Qing Zheng, Yuanhan Mo, Yang Sun, Jiahua Li, Fuping Wu, Ziyang Wang, Tonia Vincent, Bartłomiej W. Papież,
- Abstract要約: 変形-回復拡散モデル (DRDM) は, 変形拡散と回復に基づく拡散モデルである。
DRDMは、不合理な変形成分の回復を学ぶために訓練され、ランダムに変形した各画像を現実的な分布に復元する。
心MRIおよび肺CTによる実験結果から,DRDMは多種多様(10%以上の画像サイズ変形スケール)の変形を生じさせることが示された。
- 参考スコア(独自算出の注目度): 13.629617915974531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical imaging, the diffusion models have shown great potential in synthetic image generation tasks. However, these models often struggle with the interpretable connections between the generated and existing images and could create illusions. To address these challenges, our research proposes a novel diffusion-based generative model based on deformation diffusion and recovery. This model, named Deformation-Recovery Diffusion Model (DRDM), diverges from traditional score/intensity and latent feature-based approaches, emphasizing morphological changes through deformation fields rather than direct image synthesis. This is achieved by introducing a topological-preserving deformation field generation method, which randomly samples and integrates a set of multi-scale Deformation Vector Fields (DVF). DRDM is trained to learn to recover unreasonable deformation components, thereby restoring each randomly deformed image to a realistic distribution. These innovations facilitate the generation of diverse and anatomically plausible deformations, enhancing data augmentation and synthesis for further analysis in downstream tasks, such as few-shot learning and image registration. Experimental results in cardiac MRI and pulmonary CT show DRDM is capable of creating diverse, large (over 10\% image size deformation scale), and high-quality (negative rate of the Jacobian matrix's determinant is lower than 1\%) deformation fields. The further experimental results in downstream tasks, 2D image segmentation and 3D image registration, indicate significant improvements resulting from DRDM, showcasing the potential of our model to advance image manipulation and synthesis in medical imaging and beyond. Project page: https://jianqingzheng.github.io/def_diff_rec/
- Abstract(参考訳): 医用画像では、拡散モデルが合成画像生成タスクに大きな可能性を示している。
しかし、これらのモデルは生成された画像と既存の画像の間の解釈可能な接続に苦しむことが多く、錯覚を生じさせる可能性がある。
これらの課題に対処するために,変形拡散と回復に基づく新しい拡散モデルを提案する。
このモデルは、変形-回復拡散モデル(DRDM)と呼ばれ、従来のスコア/インテンシティと潜在特徴に基づくアプローチから分岐し、直接画像合成ではなく、変形場による形態的変化を強調する。
これは、多スケール変形ベクトル場(DVF)の集合をランダムにサンプリングして統合するトポロジ保存変形場生成法を導入することで達成される。
DRDMは、不合理な変形成分の回復を学ぶために訓練され、ランダムに変形した各画像を現実的な分布に復元する。
これらの革新は、多種多様で解剖学的に妥当な変形の生成を促進し、データ拡張と合成を強化し、少数ショット学習や画像登録などの下流タスクでさらなる分析を行う。
心MRIおよび肺CTによる実験結果から,DRDMは多種多様(画像サイズ10\%以上)かつ高品質(ヤコビ行列の行列式が1\%未満)な変形場を生成できることが示された。
さらに,2次元画像セグメンテーションや3次元画像登録といった下流作業のさらなる実験結果から,DRDMによる大幅な改善が示され,医用画像等の画像操作と合成の促進が図られた。
プロジェクトページ: https://jianqingzheng.github.io/def_diff_rec/
関連論文リスト
- Multi-Branch Generative Models for Multichannel Imaging with an Application to PET/CT Joint Reconstruction [42.95604565673447]
本稿では,マルチブランチ生成モデルを用いて,医用画像の相乗的再構成を学習するための概念実証について述べる。
我々は,MNIST (Modified National Institute of Standards and Technology) とPET (positron emission tomography) とCT (Computed tomography) の両方にアプローチの有効性を示す。
本研究は, パッチ分解やモデル制限などの課題にもかかわらず, 医用画像再構成のための生成モデルの可能性を強調した。
論文 参考訳(メタデータ) (2024-04-12T18:21:08Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
拡散確率モデル(DDPM)を利用したVerseDiff-UNetというエンドツーエンドフレームワークを提案する。
我々のアプローチは拡散モデルを標準のU字型アーキテクチャに統合する。
本手法はX線画像から得られた脊椎画像の1つのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-09-12T03:05:00Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in
Brain Images [59.85702949046042]
病気の画像の健全なバージョンを生成し,それを用いて画素単位の異常マップを得るための弱教師付き手法を提案する。
健常者を対象にした拡散モデルを用いて, サンプリングプロセスの各ステップで拡散拡散確率モデル (DDPM) と拡散拡散確率モデル (DDIM) を組み合わせる。
本手法が正常なサンプルに適用された場合,入力画像は大幅な修正を伴わずに再構成されることを確認した。
論文 参考訳(メタデータ) (2023-08-03T21:56:50Z) - ADASSM: Adversarial Data Augmentation in Statistical Shape Models From
Images [0.8192907805418583]
本稿では,データ依存型ノイズ生成やテクスチャ拡張を利用して,画像間SSMフレームワークのオンザフライデータ拡張のための新しい戦略を提案する。
提案手法は,画素値のみに頼らず,基礎となる幾何学に焦点をあてることにより,精度の向上を実現する。
論文 参考訳(メタデータ) (2023-07-06T20:21:12Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Diffusion Deformable Model for 4D Temporal Medical Image Generation [47.03842361418344]
3D+t(4D)情報を持つ時間体積画像は、時間動態を統計的に分析したり、病気の進行を捉えるためにしばしば医療画像に使用される。
本稿では,ソースボリュームとターゲットボリュームの中間時間ボリュームを生成する新しいディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2022-06-27T13:37:57Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。