論文の概要: Event-Aided Time-to-Collision Estimation for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2407.07324v1
- Date: Wed, 10 Jul 2024 02:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:11:16.225198
- Title: Event-Aided Time-to-Collision Estimation for Autonomous Driving
- Title(参考訳): イベント支援による自律走行の時間対衝突推定
- Authors: Jinghang Li, Bangyan Liao, Xiuyuan LU, Peidong Liu, Shaojie Shen, Yi Zhou,
- Abstract要約: ニューロモルフィックなイベントベースカメラを用いて衝突時刻を推定する新しい手法を提案する。
提案アルゴリズムは, 事象データに適合する幾何モデルに対して, 効率的かつ高精度な2段階のアプローチで構成する。
合成データと実データの両方の実験により,提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 28.13397992839372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting a potential collision with leading vehicles is an essential functionality of any autonomous/assisted driving system. One bottleneck of existing vision-based solutions is that their updating rate is limited to the frame rate of standard cameras used. In this paper, we present a novel method that estimates the time to collision using a neuromorphic event-based camera, a biologically inspired visual sensor that can sense at exactly the same rate as scene dynamics. The core of the proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data in a coarse-to-fine manner. The first step is a robust linear solver based on a novel geometric measurement that overcomes the partial observability of event-based normal flow. The second step further refines the resulting model via a spatio-temporal registration process formulated as a nonlinear optimization problem. Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method, outperforming other alternative methods in terms of efficiency and accuracy.
- Abstract(参考訳): 先導車との潜在的な衝突を予測することは、自律/アシスト運転システムにとって不可欠な機能である。
既存のビジョンベースのソリューションのボトルネックのひとつは、更新レートが標準カメラのフレームレートに制限されていることだ。
本稿では,生体に触発された視覚センサであるニューロモルフィック・イベントベースカメラを用いて衝突時刻を推定する手法を提案する。
提案アルゴリズムの中核は、粗大な方法でイベントデータに適合する効率的かつ正確な幾何モデルに対する2段階のアプローチである。
最初のステップは、イベントベース正規流の部分的観測可能性を克服する新しい幾何学的計測に基づいて、堅牢な線形解法である。
第2のステップでは、非線形最適化問題として定式化された時空間登録プロセスを通じて、結果のモデルをさらに洗練する。
合成データと実データの両方の実験により提案手法の有効性が示され、効率と精度の点で他の方法よりも優れていた。
関連論文リスト
- Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
コントラスト最大化フレームワークと非直線運動を組み合わせた新たな自己監督的損失を画素レベルの軌跡の形で導入する。
連続時間運動の高密度推定では, 合成学習モデルのゼロショット性能を29%向上する。
論文 参考訳(メタデータ) (2024-07-15T15:18:28Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
提案手法は,ディープラーニングと数値最適化アルゴリズムを統合し,行列構造を推論し,数値最適化を導出する。
大規模合成データセットを用いて,提案手法の優れた一般化性能を実証するために実験を行った。
論文 参考訳(メタデータ) (2023-10-09T14:30:06Z) - A 5-Point Minimal Solver for Event Camera Relative Motion Estimation [47.45081895021988]
本稿では,直線パラメータと線形カメラ速度予測を推定し,複数の直線を考慮した場合の1つの平均線形速度に融合できる新しい最小5点解法を提案する。
本手法は,既存の閉形式解法が23%から70%しか達成できない線形速度の推定において,連続的に100%の成功率を達成する。
論文 参考訳(メタデータ) (2023-09-29T08:30:18Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
交通状態推定問題に対する純粋にデータ駆動型かつモデルフリーなソリューションを提案する。
このテンソル構造に低ランクな仮定を課すことで、大域的パターンと未知の複素局所力学の両方を近似することができる。
本研究では,合成シミュレーションデータと実世界の高分解能データの両方について数値実験を行い,提案モデルの有効性と優位性を実証した。
論文 参考訳(メタデータ) (2021-05-21T00:08:06Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
本研究では, 波動に基づく深部畳み込みニューラルネットワーク(Deep CNN)を提案し, スパースプローブ車両軌道から高分解能交通速度のダイナミクスを推定する。
我々は,既存の学習に基づく推定手法の堅牢性を改善するために,運動波理論の原理を取り入れるための2つの重要なアプローチを導入する。
論文 参考訳(メタデータ) (2021-02-04T21:51:25Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
本研究では,実世界のランダム性を捉え,誤差を計測できる微視的交通モデルを提案する。
提案フレームワークの特長の一つは,自動車追従行動と車線変更行動の両方を1つのモデルで捉える能力である。
論文 参考訳(メタデータ) (2020-07-17T06:03:32Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
本稿では,ディープニューラルネットワークのエンドツーエンドトレーニングに基づくカメラによる車間距離と相対速度推定手法を提案する。
提案手法の重要な特徴は,2つの時間的単眼フレームによって提供される複数の視覚的手がかりの統合である。
また,移動場における視線歪みの影響を緩和する車両中心サンプリング機構を提案する。
論文 参考訳(メタデータ) (2020-06-07T08:18:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。