Learning with Instance-Dependent Noisy Labels by Anchor Hallucination and Hard Sample Label Correction
- URL: http://arxiv.org/abs/2407.07331v1
- Date: Wed, 10 Jul 2024 03:00:14 GMT
- Title: Learning with Instance-Dependent Noisy Labels by Anchor Hallucination and Hard Sample Label Correction
- Authors: Po-Hsuan Huang, Chia-Ching Lin, Chih-Fan Hsu, Ming-Ching Chang, Wei-Chao Chen,
- Abstract summary: Traditional Noisy-Label Learning (NLL) methods categorize training data into clean and noisy sets based on the loss distribution of training samples.
Our approach explicitly distinguishes between clean vs.noisy and easy vs. hard samples.
Corrected hard samples, along with the easy samples, are used as labeled data in subsequent semi-supervised training.
- Score: 12.317154103998433
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning from noisy-labeled data is crucial for real-world applications. Traditional Noisy-Label Learning (NLL) methods categorize training data into clean and noisy sets based on the loss distribution of training samples. However, they often neglect that clean samples, especially those with intricate visual patterns, may also yield substantial losses. This oversight is particularly significant in datasets with Instance-Dependent Noise (IDN), where mislabeling probabilities correlate with visual appearance. Our approach explicitly distinguishes between clean vs.noisy and easy vs. hard samples. We identify training samples with small losses, assuming they have simple patterns and correct labels. Utilizing these easy samples, we hallucinate multiple anchors to select hard samples for label correction. Corrected hard samples, along with the easy samples, are used as labeled data in subsequent semi-supervised training. Experiments on synthetic and real-world IDN datasets demonstrate the superior performance of our method over other state-of-the-art NLL methods.
Related papers
- Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - Late Stopping: Avoiding Confidently Learning from Mislabeled Examples [61.00103151680946]
We propose a new framework, Late Stopping, which leverages the intrinsic robust learning ability of DNNs through a prolonged training process.
We empirically observe that mislabeled and clean examples exhibit differences in the number of epochs required for them to be consistently and correctly classified.
Experimental results on benchmark-simulated and real-world noisy datasets demonstrate that the proposed method outperforms state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-26T12:43:25Z) - Channel-Wise Contrastive Learning for Learning with Noisy Labels [60.46434734808148]
We introduce channel-wise contrastive learning (CWCL) to distinguish authentic label information from noise.
Unlike conventional instance-wise contrastive learning (IWCL), CWCL tends to yield more nuanced and resilient features aligned with the authentic labels.
Our strategy is twofold: firstly, using CWCL to extract pertinent features to identify cleanly labeled samples, and secondly, progressively fine-tuning using these samples.
arXiv Detail & Related papers (2023-08-14T06:04:50Z) - Differences Between Hard and Noisy-labeled Samples: An Empirical Study [7.132368785057315]
noisy or incorrectly labeled samples from a labeled dataset with hard/difficult samples is an important yet under-explored topic.
We introduce a simple yet effective metric that filters out noisy-labeled samples while keeping the hard samples.
Our proposed data partitioning method significantly outperforms other methods when employed within a semi-supervised learning framework.
arXiv Detail & Related papers (2023-07-20T09:24:23Z) - PASS: Peer-Agreement based Sample Selection for training with Noisy Labels [16.283722126438125]
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects.
Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples.
We propose a new noisy-label detection method, termed Peer-Agreement based Sample Selection (PASS), to address this problem.
arXiv Detail & Related papers (2023-03-20T00:35:33Z) - Split-PU: Hardness-aware Training Strategy for Positive-Unlabeled
Learning [42.26185670834855]
Positive-Unlabeled (PU) learning aims to learn a model with rare positive samples and abundant unlabeled samples.
This paper focuses on improving the commonly-used nnPU with a novel training pipeline.
arXiv Detail & Related papers (2022-11-30T05:48:31Z) - Label-Noise Learning with Intrinsically Long-Tailed Data [65.41318436799993]
We propose a learning framework for label-noise learning with intrinsically long-tailed data.
Specifically, we propose two-stage bi-dimensional sample selection (TABASCO) to better separate clean samples from noisy samples.
arXiv Detail & Related papers (2022-08-21T07:47:05Z) - An analysis of over-sampling labeled data in semi-supervised learning
with FixMatch [66.34968300128631]
Most semi-supervised learning methods over-sample labeled data when constructing training mini-batches.
This paper studies whether this common practice improves learning and how.
We compare it to an alternative setting where each mini-batch is uniformly sampled from all the training data, labeled or not.
arXiv Detail & Related papers (2022-01-03T12:22:26Z) - Sample Prior Guided Robust Model Learning to Suppress Noisy Labels [8.119439844514973]
We propose PGDF, a novel framework to learn a deep model to suppress noise by generating the samples' prior knowledge.
Our framework can save more informative hard clean samples into the cleanly labeled set.
We evaluate our method using synthetic datasets based on CIFAR-10 and CIFAR-100, as well as on the real-world datasets WebVision and Clothing1M.
arXiv Detail & Related papers (2021-12-02T13:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.