論文の概要: Towards a text-based quantitative and explainable histopathology image analysis
- arxiv url: http://arxiv.org/abs/2407.07360v1
- Date: Wed, 10 Jul 2024 04:33:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:51:32.150379
- Title: Towards a text-based quantitative and explainable histopathology image analysis
- Title(参考訳): テキストに基づく定量的・説明可能な病理画像解析を目指して
- Authors: Anh Tien Nguyen, Trinh Thi Le Vuong, Jin Tae Kwak,
- Abstract要約: テキストベースの定量的・説明可能な病理画像解析を提案し,これをTQxと呼ぶ。
検索した単語は、病理像を定量化し、理解可能な特徴埋め込みを生成するために使用される。
その結果、TQxは、計算病理学における一般的な視覚モデルに匹敵する病理像を定量化し、分析できることを示した。
- 参考スコア(独自算出の注目度): 4.064178811354613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, vision-language pre-trained models have emerged in computational pathology. Previous works generally focused on the alignment of image-text pairs via the contrastive pre-training paradigm. Such pre-trained models have been applied to pathology image classification in zero-shot learning or transfer learning fashion. Herein, we hypothesize that the pre-trained vision-language models can be utilized for quantitative histopathology image analysis through a simple image-to-text retrieval. To this end, we propose a Text-based Quantitative and Explainable histopathology image analysis, which we call TQx. Given a set of histopathology images, we adopt a pre-trained vision-language model to retrieve a word-of-interest pool. The retrieved words are then used to quantify the histopathology images and generate understandable feature embeddings due to the direct mapping to the text description. To evaluate the proposed method, the text-based embeddings of four histopathology image datasets are utilized to perform clustering and classification tasks. The results demonstrate that TQx is able to quantify and analyze histopathology images that are comparable to the prevalent visual models in computational pathology.
- Abstract(参考訳): 近年,視覚言語による事前学習モデルがコンピュータ病理学に登場している。
従来の研究は、対照的な事前学習パラダイムを通じて、画像とテキストのペアのアライメントに重点を置いていた。
このような事前学習モデルは、ゼロショット学習や転送学習の手法で、病理画像分類に応用されている。
本稿では,事前学習した視覚言語モデルを用いて,簡単な画像からテキストへの検索によって定量的な病理像解析を行うことができると仮定する。
そこで本研究ではTQxと呼ぶテキストベースの定量的・説明可能な病理画像解析を提案する。
病理画像の集合を考慮し、学習済みの視覚言語モデルを用いて単語プールを検索する。
そして、検索した単語を用いて、病理像を定量化し、テキスト記述への直接マッピングによる理解可能な特徴埋め込みを生成する。
提案手法を評価するために、4つの病理画像データセットのテキストベースの埋め込みを用いてクラスタリングと分類処理を行う。
その結果、TQxは、計算病理学における一般的な視覚モデルに匹敵する、病理像を定量化し分析できることを示した。
関連論文リスト
- CPLIP: Zero-Shot Learning for Histopathology with Comprehensive Vision-Language Alignment [40.811510317145675]
CPLIPは、病理組織学における画像とテキストのアライメントを強化する新しい教師なし技術である。
複数の病理組織学的タスクで評価され、CPLIPはゼロショット学習シナリオにおいて顕著な改善を示した。
さらなる研究とレプリケーションを促進するため、CPLIPのコードはGitHubで入手できる。
論文 参考訳(メタデータ) (2024-06-07T18:39:58Z) - Renal digital pathology visual knowledge search platform based on language large model and book knowledge [0.1398098625978622]
我々は,60冊の腎病理書をもとに,画像分割と対応するテキスト記述のペア化を行った。
GPT2, gemma, LLma, Qwenを含む4大モデルの意味的特徴について検討した。
テキスト記述に基づく病理画像検索のための意味検索システムを構築し,RppDと命名した。
論文 参考訳(メタデータ) (2024-05-27T01:03:12Z) - Knowledge-enhanced Visual-Language Pretraining for Computational Pathology [68.6831438330526]
本稿では,公共資源から収集した大規模画像テキストペアを利用した視覚的表現学習の課題について考察する。
ヒト32組織から病理診断を必要とする4,718の疾患に対して50,470個の情報属性からなる病理知識ツリーをキュレートする。
論文 参考訳(メタデータ) (2024-04-15T17:11:25Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - Text-guided Foundation Model Adaptation for Pathological Image
Classification [40.45252665455015]
本稿では、画像とテキストの埋め込み(CITE)を結合して、病理画像分類を強化することを提案する。
CITEは、幅広いバイオメディカルテキストで事前訓練された言語モデルから得られたテキスト洞察を注入し、病理画像理解に基礎モデルを適用する。
論文 参考訳(メタデータ) (2023-07-27T14:44:56Z) - Towards a Visual-Language Foundation Model for Computational Pathology [5.72536252929528]
病理組織学(CONCH)におけるコントラスト学習について紹介する。
CONCHは、様々な組織像、生医学的テキスト、タスクに依存しない事前トレーニングのソースを用いて開発された視覚言語基盤モデルである。
13種類の多様なベンチマークで評価され, 画像分類, セグメンテーション, キャプション, テキスト・ツー・イメージ検索, 画像・テキスト検索における最先端のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-07-24T16:13:43Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
人間は簡潔で直感的な説明を使って予測を説明することができる。
特徴表現がテキストである視覚モデルでは,画像ネットイメージを効果的に分類できることを示す。
論文 参考訳(メタデータ) (2023-06-29T00:24:42Z) - Semantic Search for Large Scale Clinical Ontologies [63.71950996116403]
本稿では,大規模臨床語彙検索システムを構築するための深層学習手法を提案する。
本稿では,意味学習データに基づくトレーニングデータを生成するTriplet-BERTモデルを提案する。
このモデルは,5つの実ベンチマークデータセットを用いて評価され,提案手法は自由テキストから概念,概念まで,概念語彙の検索において高い結果が得られることを示す。
論文 参考訳(メタデータ) (2022-01-01T05:15:42Z) - HistoCartography: A Toolkit for Graph Analytics in Digital Pathology [0.6299766708197883]
HistoCartographyは、計算病理学におけるグラフ分析を容易にするために必要な前処理、機械学習、説明可能性ツールを備えた標準化されたpython APIである。
画像の種類や病理組織学のタスクにまたがる複数のデータセットの計算時間と性能をベンチマークした。
論文 参考訳(メタデータ) (2021-07-21T13:34:14Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
光音響イメージングは医療に革命をもたらす可能性がある。
この技術の臨床的翻訳には、高次元取得したデータを臨床的に関連性があり解釈可能な情報に変換する必要がある。
本稿では,多スペクトル光音響画像のセマンティックセグメンテーションに対する深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-20T09:33:55Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。