論文の概要: Automatic Extraction of Disease Risk Factors from Medical Publications
- arxiv url: http://arxiv.org/abs/2407.07373v1
- Date: Wed, 10 Jul 2024 05:17:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:51:32.127788
- Title: Automatic Extraction of Disease Risk Factors from Medical Publications
- Title(参考訳): 医学出版物から疾患危険因子の自動抽出
- Authors: Maxim Rubchinsky, Ella Rabinovich, Adi Shraibman, Netanel Golan, Tali Sahar, Dorit Shweiki,
- Abstract要約: 医学文献から疾患の危険因子の同定を自動化するための新しいアプローチを提案する。
まず、リスクファクターの議論の有無に基づいて関連記事を特定し、最後に、特定のリスクファクター情報を抽出する。
私たちのコントリビューションには、リスクファクタの自動抽出と、いくつかのデータセットのコンパイルのための包括的なパイプラインの開発が含まれています。
- 参考スコア(独自算出の注目度): 1.321009936753118
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel approach to automating the identification of risk factors for diseases from medical literature, leveraging pre-trained models in the bio-medical domain, while tuning them for the specific task. Faced with the challenges of the diverse and unstructured nature of medical articles, our study introduces a multi-step system to first identify relevant articles, then classify them based on the presence of risk factor discussions and, finally, extract specific risk factor information for a disease through a question-answering model. Our contributions include the development of a comprehensive pipeline for the automated extraction of risk factors and the compilation of several datasets, which can serve as valuable resources for further research in this area. These datasets encompass a wide range of diseases, as well as their associated risk factors, meticulously identified and validated through a fine-grained evaluation scheme. We conducted both automatic and thorough manual evaluation, demonstrating encouraging results. We also highlight the importance of improving models and expanding dataset comprehensiveness to keep pace with the rapidly evolving field of medical research.
- Abstract(参考訳): 本稿では, バイオメディカル領域の事前学習モデルを利用して, 特定の課題に適応しながら, 医療文献から疾患の危険因子の同定を自動化する新しいアプローチを提案する。
医療記事の多様で非構造的な性質の課題に直面する中で,本研究では,まず関連項目を識別し,リスクファクターの議論の有無に基づいて分類し,最後に,質問応答モデルを用いて疾患の特定の危険因子情報を抽出する多段階システムを提案する。
当社のコントリビューションには、リスクファクタの自動抽出のための包括的なパイプラインの開発や、いくつかのデータセットのコンパイルが含まれています。
これらのデータセットは、広範囲の疾患と関連する危険因子を含み、きめ細かな評価スキームによって慎重に識別され、検証される。
自動的, 徹底的な手動評価を行い, 励振効果を示した。
また、急速に発展する医学研究の分野に合わせて、モデルの改善とデータセットの包括性の拡大が重要であることも強調する。
関連論文リスト
- A Survey of Deep Learning-based Radiology Report Generation Using Multimodal Data [41.8344712915454]
自動放射線診断レポート生成は、医師の作業負荷を軽減し、医療資源の地域格差を最小限にすることができる。
マルチモーダル入力データから情報を得るためには、医師を模倣する計算モデルが必要であるため、これは難しい課題である。
近年, トランスフォーマー, コントラスト学習, 知識ベース構築など, 深層学習に基づく手法を用いてこの問題に対処する研究が進められている。
本調査では,最新の研究で開発された重要な手法を要約し,ディープラーニングに基づくレポート生成のための一般的なワークフローを提案する。
論文 参考訳(メタデータ) (2024-05-21T14:37:35Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Feasibility of Identifying Factors Related to Alzheimer's Disease and
Related Dementia in Real-World Data [56.7069469207376]
537例から10項目で477の危険因子を抽出した。
AD/ADRDの遺伝子検査は、まだ一般的ではなく、構造化EHRと非構造化EHRの両方で文書化されていない。
AD/ADRDリスクファクタに関する継続的な研究を考えると、NLP法による文献マイニングは、私たちの知識マップを自動的に更新するソリューションを提供する。
論文 参考訳(メタデータ) (2024-02-03T18:17:19Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Machine Learning for Infectious Disease Risk Prediction: A Survey [14.030548098195258]
本稿では,機械学習が病気の伝達パターンを定量的に特徴づける上で,いかに重要な役割を果たせるかを体系的に記述する。
モデル入力の処理、タスク指向の目的の設計、性能評価の実行において直面する課題について議論する。
論文 参考訳(メタデータ) (2023-08-06T06:57:11Z) - Typology of Risks of Generative Text-to-Image Models [1.933681537640272]
本稿では,DALL-EやMidjourneyといった現代テキスト・画像生成モデルにかかわる直接的なリスクと害について検討する。
これらのリスクの理解と治療に関する知識のギャップは,すでに解決されているものの,我々のレビューでは明らかである。
データバイアスから悪意のある使用まで、22の異なるリスクタイプを特定します。
論文 参考訳(メタデータ) (2023-07-08T20:33:30Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - Label Dependent Attention Model for Disease Risk Prediction Using
Multimodal Electronic Health Records [8.854691034104071]
疾病リスク予測は、現代医療の分野で注目を集めている。
リスク予測にAIモデルを適用する上での課題のひとつは、解釈可能な証拠を生成することだ。
単語とラベルを共同で埋め込む手法を提案する。
論文 参考訳(メタデータ) (2022-01-18T07:21:20Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Semi-Automating Knowledge Base Construction for Cancer Genetics [20.74608114488094]
本稿では,全文がん遺伝子記事からキー要素を自動的に抽出するモデルを提案する。
手作業による知識ベースを用いた全文記事のトークンやスニペットの遠隔監視を行う。
論文 参考訳(メタデータ) (2020-05-17T02:01:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。