論文の概要: Rectifier: Code Translation with Corrector via LLMs
- arxiv url: http://arxiv.org/abs/2407.07472v1
- Date: Wed, 10 Jul 2024 08:58:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:21:35.008950
- Title: Rectifier: Code Translation with Corrector via LLMs
- Title(参考訳): 整流器:LLMによるCorrectorによるコード翻訳
- Authors: Xin Yin, Chao Ni, Tien N. Nguyen, Shaohua Wang, Xiaohu Yang,
- Abstract要約: 本稿では,翻訳誤りを修復するマイクロ・ユニバーサルモデルであるRectifierを提案する。
C++,Java,Python間の翻訳タスクの実験結果から,本モデルが有効な修復能力を有することが示された。
- 参考スコア(独自算出の注目度): 11.38401806203093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software migration is garnering increasing attention with the evolution of software and society. Early studies mainly relied on handcrafted translation rules to translate between two languages, the translation process is error-prone and time-consuming. In recent years, researchers have begun to explore the use of pre-trained large language models (LLMs) in code translation. However, code translation is a complex task that LLMs would generate mistakes during code translation, they all produce certain types of errors when performing code translation tasks, which include (1) compilation error, (2) runtime error, (3) functional error, and (4) non-terminating execution. We found that the root causes of these errors are very similar (e.g. failure to import packages, errors in loop boundaries, operator errors, and more). In this paper, we propose a general corrector, namely Rectifier, which is a micro and universal model for repairing translation errors. It learns from errors generated by existing LLMs and can be widely applied to correct errors generated by any LLM. The experimental results on translation tasks between C++, Java, and Python show that our model has effective repair ability, and cross experiments also demonstrate the robustness of our method.
- Abstract(参考訳): ソフトウェア移行は、ソフトウェアと社会の進化によって、ますます注目を集めている。
初期の研究は、主に2つの言語を翻訳するために手作りの翻訳規則に頼っていた。
近年,コード翻訳におけるLLM(Pre-trained large language model)の利用が研究されている。
コード翻訳は,(1)コンパイルエラー,(2)実行時エラー,(3)機能エラー,(4)非終了実行など,コード翻訳タスクの実行時に発生するある種のエラーである。
これらのエラーの根本原因は非常に似ています(例えば、パッケージのインポートの失敗、ループ境界のエラー、オペレータエラーなど)。
本稿では,翻訳誤りを修復するためのマイクロ・ユニバーサルモデルであるRectifierを提案する。
既存のLLMが生成したエラーから学習し、任意のLLMが生成したエラーの修正に広く適用することができる。
C++,Java,Python間の翻訳タスクの実験結果から,本モデルが有効な補修能力を持つことを示すとともに,クロス実験により本手法の堅牢性も実証された。
関連論文リスト
- Mitigating the Language Mismatch and Repetition Issues in LLM-based Machine Translation via Model Editing [39.375342978538654]
機械翻訳を行うためにLLM(Large Language Models)を活用することに注力する。
誤りの2つのパターンが頻繁に発生し、言語ミスマッチと繰り返しの翻訳品質に劇的な影響を与えていることを観察する。
モデル編集手法を活用することにより,これらの2つの問題を緩和する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-09T16:51:21Z) - TRANSAGENT: An LLM-Based Multi-Agent System for Code Translation [16.46292795782835]
コード翻訳は、ソフトウェアマイグレーション、システムアブレーション、クロスプラットフォーム開発に不可欠である。
従来のルールベースのメソッドは手書きのルールに依存している。
最近では、LLM(Large Language Models)の進歩により、学習ベースのコード翻訳がさらに強化されている。
本稿では,構文誤りや意味的誤りを解消し,LLMに基づくコード翻訳を強化した新しいマルチエージェントシステムTransagENTを提案する。
論文 参考訳(メタデータ) (2024-09-30T02:53:03Z) - Towards Translating Real-World Code with LLMs: A Study of Translating to Rust [13.743967357458287]
大規模言語モデル(LLM)は、ほとんどのプログラミング言語でコードを記述する能力のため、コード翻訳において有望であることを示す。
実世界のオープンソースプロジェクトから抽出したコードについて検討する。
FLOURINEは、差分ファジィを使用して、Rust翻訳が元のソースプログラムと同等のI/Oかどうかをチェックする、エンドツーエンドのコード変換ツールである。
論文 参考訳(メタデータ) (2024-05-19T10:54:03Z) - MEIC: Re-thinking RTL Debug Automation using LLMs [18.964523115622928]
本研究は,新しいフレームワーク,Make each Iteration Count(MEIC)を紹介する。
MEICは、構文と関数のエラーを識別し、修正するのに適している。
フレームワークを評価するため、178の共通RTLプログラミングエラーからなるオープンソースデータセットを提供する。
論文 参考訳(メタデータ) (2024-05-10T22:32:39Z) - Exploring and Unleashing the Power of Large Language Models in Automated Code Translation [40.25727029618665]
本稿では,自動翻訳タスクのための多種多様なLLMと学習ベーストランスパイラについて検討する。
UniTrans は、様々な LLM に適用可能な統一コード翻訳フレームワークである。
最近の3つのLLMはUniTransでテストされており、いずれも大幅に改善されている。
論文 参考訳(メタデータ) (2024-04-23T00:49:46Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - A Novel Approach for Automatic Program Repair using Round-Trip
Translation with Large Language Models [50.86686630756207]
研究によると、ある文の文法的誤りは、それを他の言語に翻訳し、その語を返せば修正できる。
現在の自動プログラム修復(APR)生成モデルは、ソースコードで事前訓練され、修正のために微調整されている。
本稿では,あるプログラミング言語から別のプログラミング言語,あるいは自然言語へのコード変換,そして,その逆といった,微調整ステップをバイパスし,ラウンド・トリップ変換(RTT)を用いる手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T22:36:31Z) - Learning From Mistakes Makes LLM Better Reasoner [106.48571828587728]
大規模言語モデル(LLM)は、最近数学の問題を解く際、顕著な推論能力を示した。
この研究は、LLMが人間の学習プロセスに似たMistAkes(LEMA)から学習できるかどうかを探求する。
論文 参考訳(メタデータ) (2023-10-31T17:52:22Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
本稿では,LLMに翻訳学習を教えるために,サンプルを用いた新しいフレームワークを提案する。
我々のアプローチは、正しい翻訳例と間違った翻訳例をモデルに提示し、好みの損失を使ってモデルの学習をガイドすることである。
本研究は,翻訳タスクのための微調整LDMの新しい視点を提供し,高品質な翻訳を実現するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2023-07-10T08:15:40Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z) - ParroT: Translating during Chat using Large Language Models tuned with
Human Translation and Feedback [90.20262941911027]
ParroTはチャット中の翻訳機能を強化し、規制するフレームワークである。
具体的には、ParroTは、翻訳データを命令フォロースタイルに書き換える。
本稿では,ParroTモデルを微調整するための3つの命令タイプを提案する。
論文 参考訳(メタデータ) (2023-04-05T13:12:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。