Assessing a binary quantum channel exploiting a Silicon photomultiplier based hybrid receiver
- URL: http://arxiv.org/abs/2407.07507v1
- Date: Wed, 10 Jul 2024 09:52:04 GMT
- Title: Assessing a binary quantum channel exploiting a Silicon photomultiplier based hybrid receiver
- Authors: Alberto Sanvito, Silvia Cassina, Marco Lamperti, Michele N. Notarnicola, Stefano Olivares, Alessia Allevi,
- Abstract summary: We consider a quantum channel exploiting a Silicon-photomultiplier-based receiver.
We investigate two scenarios: information transmission over the channel, quantified by the mutual information, and continuous-variable quantum key distribution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum communication protocols, the use of photon-number-resolving detectors could open new perspectives by broadening the way to encode and decode information, and merging the properties of discrete and continuous variables. In this work, we consider a quantum channel exploiting a Silicon-photomultiplier-based receiver and evaluate its performance for quantum communication protocols under three possible configurations, defined by different post-processing of the detection outcomes. We investigate two scenarios: information transmission over the channel, quantified by the mutual information, and continuous-variable quantum key distribution. The preliminary results encourage further use of this detection scheme in extended networks.
Related papers
- Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth [0.0]
Current quantum protocols are limited by the narrow electronic bandwidth of standard measurement devices.
We present a concept of frequency multiplexed quantum channels and a set of methods to process quantum information efficiently across the available optical bandwidth.
arXiv Detail & Related papers (2023-10-26T23:50:20Z) - On the Characterization of Quantum Flip Stars with Quantum Network
Tomography [11.545489116237102]
Quantum Network Tomography refers to the characterization of channel noise in a quantum network through end-to-end measurements.
We propose network tomography protocols for quantum star networks formed by quantum channels characterized by a single, non-trivial Pauli operator.
Our results further the end-to-end characterization of quantum bit-flip star networks by introducing tomography protocols where state distribution and measurements are designed separately.
arXiv Detail & Related papers (2023-07-12T00:18:15Z) - Nonorthogonal coding in spectrally-entangled photons [0.0]
A fiber-based long-distance quantum communication can be feasible owing to its low transmission loss.
With multiplexed photon pairs, we propose to implement a nonorthogonal coding scheme in their spectral modes.
arXiv Detail & Related papers (2022-11-21T15:04:43Z) - A Continuous Variable Quantum Switch [0.0]
We present a quantum repeating switch for CV quantum encodings that caters to multiple communication flows.
The architecture of the switch is based on quantum light sources, detectors, memories, and switching fabric.
We present numerical results on an achievable bipartite entanglement request rate region for multiple CV entanglement flows.
arXiv Detail & Related papers (2022-09-17T15:23:20Z) - Computation-aided classical-quantum multiple access to boost network
communication speeds [61.12008553173672]
We quantify achievable quantum communication rates of codes with computation property for a two-sender cq-MAC.
We show that it achieves the maximum possible communication rate (the single-user capacity), which cannot be achieved with conventional design.
arXiv Detail & Related papers (2021-05-30T11:19:47Z) - Advantages and Bottlenecks of Quantum Machine Learning for Remote
Sensing [63.69764116066747]
This concept paper aims to provide a brief outline of quantum computers, explore existing methods of quantum image classification techniques, and discuss the bottlenecks of performing these algorithms on currently available open source platforms.
Next steps include expanding the size of the quantum hidden layer and increasing the variety of output image options.
arXiv Detail & Related papers (2021-01-26T09:31:46Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Communication Enhancement by Superposing
Trajectories [0.8651061687255295]
In quantum communication networks, wires represent well-defined trajectories along which quantum systems are transmitted.
Such a control has been shown to enable the transmission of information even when quantum communication protocols through well-defined trajectories fail.
arXiv Detail & Related papers (2020-07-09T18:01:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.