Real World Federated Learning with a Knowledge Distilled Transformer for Cardiac CT Imaging
- URL: http://arxiv.org/abs/2407.07557v2
- Date: Thu, 02 Jan 2025 13:22:55 GMT
- Title: Real World Federated Learning with a Knowledge Distilled Transformer for Cardiac CT Imaging
- Authors: Malte Tölle, Philipp Garthe, Clemens Scherer, Jan Moritz Seliger, Andreas Leha, Nina Krüger, Stefan Simm, Simon Martin, Sebastian Eble, Halvar Kelm, Moritz Bednorz, Florian André, Peter Bannas, Gerhard Diller, Norbert Frey, Stefan Groß, Anja Hennemuth, Lars Kaderali, Alexander Meyer, Eike Nagel, Stefan Orwat, Moritz Seiffert, Tim Friede, Tim Seidler, Sandy Engelhardt,
- Abstract summary: We conduct the largest federated cardiac CT analysis to date in a real-world setting across eight hospitals.<n>Our two-step semi-supervised strategy distills knowledge from task-specific CNNs into a transformer.<n>This improves predictive accuracy and enables simultaneous learning of all partial labels across the federation.
- Score: 25.98149779380328
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning is a renowned technique for utilizing decentralized data while preserving privacy. However, real-world applications often face challenges like partially labeled datasets, where only a few locations have certain expert annotations, leaving large portions of unlabeled data unused. Leveraging these could enhance transformer architectures ability in regimes with small and diversely annotated sets. We conduct the largest federated cardiac CT analysis to date (n=8,104) in a real-world setting across eight hospitals. Our two-step semi-supervised strategy distills knowledge from task-specific CNNs into a transformer. First, CNNs predict on unlabeled data per label type and then the transformer learns from these predictions with label-specific heads. This improves predictive accuracy and enables simultaneous learning of all partial labels across the federation, and outperforms UNet-based models in generalizability on downstream tasks. Code and model weights are made openly available for leveraging future cardiac CT analysis.
Related papers
- CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation [60.08541107831459]
This paper proposes a CNN-Transformer rectified collaborative learning framework to learn stronger CNN-based and Transformer-based models for medical image segmentation.
Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels.
We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space.
arXiv Detail & Related papers (2024-08-25T01:27:35Z) - Deep models for stroke segmentation: do complex architectures always perform better? [1.4651272514940197]
Stroke segmentation plays a crucial role in the diagnosis and treatment of stroke patients.
Deep models have been introduced for general medical image segmentation.
In this study, we selected four types of deep models that were recently proposed and evaluated their performance for stroke segmentation.
arXiv Detail & Related papers (2024-03-25T20:44:01Z) - FedAnchor: Enhancing Federated Semi-Supervised Learning with Label
Contrastive Loss for Unlabeled Clients [19.3885479917635]
Federated learning (FL) is a distributed learning paradigm that facilitates collaborative training of a shared global model across devices.
We propose FedAnchor, an innovative FSSL method that introduces a unique double-head structure, called anchor head, paired with the classification head trained exclusively on labeled anchor data on the server.
Our approach mitigates the confirmation bias and overfitting issues associated with pseudo-labeling techniques based on high-confidence model prediction samples.
arXiv Detail & Related papers (2024-02-15T18:48:21Z) - Capturing Local and Global Features in Medical Images by Using Ensemble
CNN-Transformer [0.0]
This paper introduces a classification model called the Controllable Ensemble Transformer and CNN (CETC) for the analysis of medical images.
The CETC model combines the powerful capabilities of convolutional neural networks (CNNs) and transformers to effectively capture both local and global features.
Remarkably, the model outperforms existing state-of-the-art models across various evaluation metrics.
arXiv Detail & Related papers (2023-11-03T05:55:28Z) - Rethinking Pre-Training in Tabular Data: A Neighborhood Embedding Perspective [71.45945607871715]
We propose Tabular data Pre-Training via Meta-representation (TabPTM)
The core idea is to embed data instances into a shared feature space, where each instance is represented by its distance to a fixed number of nearest neighbors and their labels.
Extensive experiments on 101 datasets confirm TabPTM's effectiveness in both classification and regression tasks, with and without fine-tuning.
arXiv Detail & Related papers (2023-10-31T18:03:54Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
We propose a novel Detection Transformer for 3D anatomical structure detection, dubbed Focused Decoder.
Focused Decoder leverages information from an anatomical region atlas to simultaneously deploy query anchors and restrict the cross-attention's field of view.
We evaluate our proposed approach on two publicly available CT datasets and demonstrate that Focused Decoder not only provides strong detection results and thus alleviates the need for a vast amount of annotated data but also exhibits exceptional and highly intuitive explainability of results via attention weights.
arXiv Detail & Related papers (2022-07-21T22:17:21Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Rapid model transfer for medical image segmentation via iterative
human-in-the-loop update: from labelled public to unlabelled clinical
datasets for multi-organ segmentation in CT [22.411929051477912]
This paper presents a novel and generic human-in-the-loop scheme for efficiently transferring a segmentation model from a small-scale labelled dataset to a larger-scale unlabelled dataset for multi-organ segmentation in CT.
The results show that our scheme can not only improve the performance by 19.7% on Dice, but also expedite the cost time of manual labelling from 13.87 min to 1.51 min per CT volume during the model transfer, demonstrating the clinical usefulness with promising potentials.
arXiv Detail & Related papers (2022-04-13T08:22:42Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Transformer-based Spatial-Temporal Feature Learning for EEG Decoding [4.8276709243429]
We propose a novel EEG decoding method that mainly relies on the attention mechanism.
We have reached the level of the state-of-the-art in multi-classification of EEG, with fewer parameters.
It has good potential to promote the practicality of brain-computer interface (BCI)
arXiv Detail & Related papers (2021-06-11T00:48:18Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - "Name that manufacturer". Relating image acquisition bias with task
complexity when training deep learning models: experiments on head CT [0.0]
We analyze how the distribution of scanner manufacturers in a dataset can contribute to the overall bias of deep learning models.
We demonstrate that CNNs can learn to distinguish the imaging scanner manufacturer and that this bias can substantially impact model performance.
arXiv Detail & Related papers (2020-08-19T16:05:58Z) - Cross-Domain Segmentation with Adversarial Loss and Covariate Shift for
Biomedical Imaging [2.1204495827342438]
This manuscript aims to implement a novel model that can learn robust representations from cross-domain data by encapsulating distinct and shared patterns from different modalities.
The tests on CT and MRI liver data acquired in routine clinical trials show that the proposed model outperforms all other baseline with a large margin.
arXiv Detail & Related papers (2020-06-08T07:35:55Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z) - Synthetic vascular structure generation for unsupervised pre-training in
CTA segmentation tasks [0.0]
We train a U-net architecture at a vessel segmentation task that can be used to provide insights when treating stroke patients.
We create a computational model that generates synthetic vascular structures which can be blended into unlabeled CT scans of the head.
arXiv Detail & Related papers (2020-01-02T23:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.