"Name that manufacturer". Relating image acquisition bias with task
complexity when training deep learning models: experiments on head CT
- URL: http://arxiv.org/abs/2008.08525v1
- Date: Wed, 19 Aug 2020 16:05:58 GMT
- Title: "Name that manufacturer". Relating image acquisition bias with task
complexity when training deep learning models: experiments on head CT
- Authors: Giorgio Pietro Biondetti, Romane Gauriau, Christopher P. Bridge,
Charles Lu, Katherine P. Andriole
- Abstract summary: We analyze how the distribution of scanner manufacturers in a dataset can contribute to the overall bias of deep learning models.
We demonstrate that CNNs can learn to distinguish the imaging scanner manufacturer and that this bias can substantially impact model performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As interest in applying machine learning techniques for medical images
continues to grow at a rapid pace, models are starting to be developed and
deployed for clinical applications. In the clinical AI model development
lifecycle (described by Lu et al. [1]), a crucial phase for machine learning
scientists and clinicians is the proper design and collection of the data
cohort. The ability to recognize various forms of biases and distribution
shifts in the dataset is critical at this step. While it remains difficult to
account for all potential sources of bias, techniques can be developed to
identify specific types of bias in order to mitigate their impact. In this work
we analyze how the distribution of scanner manufacturers in a dataset can
contribute to the overall bias of deep learning models. We evaluate
convolutional neural networks (CNN) for both classification and segmentation
tasks, specifically two state-of-the-art models: ResNet [2] for classification
and U-Net [3] for segmentation. We demonstrate that CNNs can learn to
distinguish the imaging scanner manufacturer and that this bias can
substantially impact model performance for both classification and segmentation
tasks. By creating an original synthesis dataset of brain data mimicking the
presence of more or less subtle lesions we also show that this bias is related
to the difficulty of the task. Recognition of such bias is critical to develop
robust, generalizable models that will be crucial for clinical applications in
real-world data distributions.
Related papers
- Refining Tuberculosis Detection in CXR Imaging: Addressing Bias in Deep Neural Networks via Interpretability [1.9936075659851882]
We argue that the reliability of deep learning models is limited, even if they can be shown to obtain perfect classification accuracy on the test data.
We show that pre-training a deep neural network on a large-scale proxy task, as well as using mixed objective optimization network (MOON), can improve the alignment of decision foundations between models and experts.
arXiv Detail & Related papers (2024-07-19T06:41:31Z) - Improving Deep Learning-based Automatic Cranial Defect Reconstruction by Heavy Data Augmentation: From Image Registration to Latent Diffusion Models [0.2911706166691895]
The work is a considerable contribution to the field of artificial intelligence in the automatic modeling of personalized cranial implants.
We show that the use of heavy data augmentation significantly increases both the quantitative and qualitative outcomes.
We also show that the synthetically augmented network successfully reconstructs real clinical defects.
arXiv Detail & Related papers (2024-06-10T15:34:23Z) - Multiclass Semantic Segmentation to Identify Anatomical Sub-Regions of
Brain and Measure Neuronal Health in Parkinson's Disease [2.288652563296735]
Currently, a machine learning model to analyze sub-anatomical regions of the brain to analyze 2D histological images is not available.
In this study, we trained our best fit model on approximately one thousand annotated 2D brain images stained with Nissl/ Haematoxylin and Tyrosine Hydroxylase enzyme (TH, indicator of dopaminergic neuron viability)
The model effectively is able to detect two sub-regions compacta (SNCD) and reticulata (SNr) in all the images.
arXiv Detail & Related papers (2023-01-07T19:35:28Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
We propose a Competence-based Multimodal Curriculum Learning framework ( CMCL) to alleviate the data bias and make best use of available data.
Specifically, CMCL simulates the learning process of radiologists and optimize the model in a step by step manner.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.
arXiv Detail & Related papers (2022-06-24T08:16:01Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Realistic Adversarial Data Augmentation for MR Image Segmentation [17.951034264146138]
We propose an adversarial data augmentation method for training neural networks for medical image segmentation.
Our model generates plausible and realistic signal corruptions, which models the intensity inhomogeneities caused by a common type of artefacts in MR imaging: bias field.
We show that such an approach can improve the ability generalization and robustness of models as well as provide significant improvements in low-data scenarios.
arXiv Detail & Related papers (2020-06-23T20:43:18Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - Improving Calibration and Out-of-Distribution Detection in Medical Image
Segmentation with Convolutional Neural Networks [8.219843232619551]
Convolutional Neural Networks (CNNs) have shown to be powerful medical image segmentation models.
We advocate for multi-task learning, i.e., training a single model on several different datasets.
We show that not only a single CNN learns to automatically recognize the context and accurately segment the organ of interest in each context, but also that such a joint model often has more accurate and better-calibrated predictions.
arXiv Detail & Related papers (2020-04-12T23:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.