Bosonic and fermionic coherence of N-partite states in the background of a dilaton black hole
- URL: http://arxiv.org/abs/2407.07688v2
- Date: Sat, 21 Sep 2024 00:56:33 GMT
- Title: Bosonic and fermionic coherence of N-partite states in the background of a dilaton black hole
- Authors: Wen-Mei Li, Shu-Min Wu,
- Abstract summary: We study the N-partite coherences of GHZ and W states for free bosonic and fermionic fields when any n observers hover near the event horizon of a Garfinkle-Horowitz-Strominger dilaton black hole.
It has been found that the coherence of the bosonic field is greater than that of the fermionic field, while the entanglement of the fermionic field is greater than that of the bosonic field in dilaton spacetime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the N-partite coherences of GHZ and W states for free bosonic and fermionic fields when any n observers hover near the event horizon of a Garfinkle-Horowitz-Strominger (GHS) dilaton black hole. We derive the more general analytical expressions for N-partite coherence, encompassing both physically accessible and inaccessible coherences in the context of the dilaton black hole. It has been found that the coherence of the bosonic field is greater than that of the fermionic field, while the entanglement of the fermionic field is greater than that of the bosonic field in dilaton spacetime. Additionally, the coherence of the W state is greater than that of the GHZ state, whereas the entanglement of the GHZ state is greater than that of the W state in curved spacetime. These results suggest that we should utilize suitable quantum resources and different types of particles for relativistic quantum information tasks.
Related papers
- Horizon quantum geometries and decoherence [49.1574468325115]
There is mounting theoretical evidence that black hole horizons induce decoherence on a quantum system.<n>This phenomenon has been shown to owe its existence to soft modes.<n>We show that the discreteness of the energy levels associated to the different geometric configurations might have strong impact on the results.
arXiv Detail & Related papers (2025-07-24T18:00:30Z) - Multiqubit coherence of mixed states near event horizon [1.8311148945110534]
In Schwarzschild spacetime, fermionic fields show stronger multiqubit entanglement, while bosonic fields show greater multiqubit coherence.<n>Our study reveals how Schwarzschild spacetime reshapes quantum resource trade-offs across states, statistics, and correlations.
arXiv Detail & Related papers (2025-05-12T12:08:45Z) - Entanglement cones and horizons in analogue cosmological production of Dirac fermions [49.1574468325115]
We study the appearance of fermion condensates for self-interacting Dirac fermions.
We show that the combined breakdown of time-reversal symmetry due to the expanding spacetime, and parity due to a pseudo-scalar condensate, manifest through the structure of the light-cone-like propagation of entanglement in this analogue cQFT.
arXiv Detail & Related papers (2025-03-24T22:20:16Z) - Nonseparability of multipartite systems in dilaton black hole [6.0606429623298546]
We investigate the nonseparability of N-partite quantum systems by employing the Abe-Rajagopal (AR) $q$-conditional entropy for both free bosonic and fermionic fields.
An intriguing finding is that the Hawking effect of the black hole can generate a net nonseparability of W state for fermionic field.
arXiv Detail & Related papers (2025-03-23T03:39:47Z) - Note on the local calculation of decoherence of quantum superpositions in de Sitter spacetime [2.212209097253224]
We study the decoherence effect of quantum superposition in de Sitter spacetime due to the presence of the cosmological horizon.
We compute the entangling particle numbers in scalar field, electromagnetic field, and gravitational field scenarios.
arXiv Detail & Related papers (2024-12-31T01:30:04Z) - Genuine N-partite entanglement in Schwarzschild-de Sitter black hole spacetime [2.2161679312767553]
We study genuine N-partite entanglement of massless Dirac fields in the Schwarzschild-de Sitter spacetime.
It is shown that genuine N-partite entanglement monotonically decreases with the decrease of the mass of the black hole.
It is interesting to note that genuine N-partite entanglement is a non-monotonic function of the cosmological constant.
arXiv Detail & Related papers (2024-03-18T04:50:42Z) - Distribution of distance-based quantum resources outside a radiating
Schwarzschild black hole [2.6098692031389583]
We examine the distribution of quantum resources in the proximity of a Schwarzschild black hole.
We find that coherence and discord exhibit sudden disappearance for certain initial states.
In contrast to coherence and discord, we are unable to regenerate entanglement for a given initial state.
arXiv Detail & Related papers (2024-02-19T17:30:39Z) - Quantum Characteristics Near Event Horizons [4.233828584645792]
We investigate quantum characteristics around Schwarzschild black hole, exploring various quantum resources and their interplay in curved space-time.
Our analysis reveals intriguing behaviors of quantum coherence, global and genuine multipartite entanglement, first-order coherence, and mutual information in different scenarios.
arXiv Detail & Related papers (2024-01-22T15:15:18Z) - Signatures of Rotating Black Holes in Quantum Superposition [0.09118034517251884]
We show that a two-level system interacting with a quantum field residing in the spacetime exhibits resonant peaks in its response at certain values of the superposed masses.
Our results suggest that deeper insights into quantum-gravitational phenomena may be accessible via tools in relativistic quantum information and curved spacetime quantum field theory.
arXiv Detail & Related papers (2023-10-16T22:24:21Z) - The Fermionic Entanglement Entropy and Area Law for the Relativistic Dirac Vacuum State [44.99833362998488]
We consider the fermionic entanglement entropy for the free Dirac field in a bounded spatial region of Minkowski spacetime.
An area law is proven in the limiting cases where the volume tends to infinity and/or the regularization length tends to zero.
arXiv Detail & Related papers (2023-10-05T12:08:03Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Observation of false vacuum decay via bubble formation in ferromagnetic
superfluids [47.187609203210705]
In quantum field theory, the decay of an extended metastable state into the real ground state is known as false vacuum decay''
Here, we observe bubble nucleation in isolated and highly controllable superfluid atomic systems.
arXiv Detail & Related papers (2023-05-09T07:41:08Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Spin-1/2 particles under the influence of a uniform magnetic field in
the interior Schwarzschild solution [62.997667081978825]
relativistic wave equation for spin-1/2 particles in the interior Schwarzschild solution in the presence of a uniform magnetic field is obtained.
Results are relevant to the physics of the interior of neutron stars, where both the gravitational and the magnetic fields are very intense.
arXiv Detail & Related papers (2021-11-30T14:46:00Z) - Quantum signatures of black hole mass superpositions [0.0]
We apply our approach to analyze the dynamics of a detector in a spacetime generated by a BTZ black hole in a superposition of masses.
We find that the detector exhibits signatures of quantum-gravitational effects corroborating Bekenstein's seminal conjecture concerning the quantized mass spectrum of black holes in quantum gravity.
arXiv Detail & Related papers (2021-11-26T05:20:25Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.