Model-based learning for multi-antenna multi-frequency location-to-channel mapping
- URL: http://arxiv.org/abs/2407.07719v2
- Date: Mon, 15 Jul 2024 06:54:53 GMT
- Title: Model-based learning for multi-antenna multi-frequency location-to-channel mapping
- Authors: Baptiste Chatelier, Vincent Corlay, Matthieu Crussière, Luc Le Magoarou,
- Abstract summary: Implicit Neural Representation literature showed that classical neural architecture are biased towards learning low-frequency content.
This paper leverages the model-based machine learning paradigm to derive a problem-specific neural architecture from a propagation channel model.
- Score: 6.067275317776295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Years of study of the propagation channel showed a close relation between a location and the associated communication channel response. The use of a neural network to learn the location-to-channel mapping can therefore be envisioned. The Implicit Neural Representation (INR) literature showed that classical neural architecture are biased towards learning low-frequency content, making the location-to-channel mapping learning a non-trivial problem. Indeed, it is well known that this mapping is a function rapidly varying with the location, on the order of the wavelength. This paper leverages the model-based machine learning paradigm to derive a problem-specific neural architecture from a propagation channel model. The resulting architecture efficiently overcomes the spectral-bias issue. It only learns low-frequency sparse correction terms activating a dictionary of high-frequency components. The proposed architecture is evaluated against classical INR architectures on realistic synthetic data, showing much better accuracy. Its mapping learning performance is explained based on the approximated channel model, highlighting the explainability of the model-based machine learning paradigm.
Related papers
- Modeling of Time-varying Wireless Communication Channel with Fading and Shadowing [0.0]
We propose a new approach that combines a deep learning neural network with a mixture density network model to derive the conditional probability density function of receiving power.
Experiments on Nakagami fading channel model and Log-normal shadowing channel model with path loss and noise show that the new approach is more statistically accurate, faster, and more robust than the previous deep learning-based channel models.
arXiv Detail & Related papers (2024-05-13T21:30:50Z) - Model-based learning for location-to-channel mapping [0.0]
This paper presents a frugal, model-based network that separates the low frequency from the high frequency components of the target mapping function.
This yields an hypernetwork architecture where the neural network only learns low frequency sparse coefficients in a dictionary of high frequency components.
Simulation results show that the proposed neural network outperforms standard approaches on realistic synthetic data.
arXiv Detail & Related papers (2023-08-28T07:39:53Z) - Insights on Neural Representations for End-to-End Speech Recognition [28.833851817220616]
End-to-end automatic speech recognition (ASR) models aim to learn a generalised speech representation.
Previous investigations of network similarities using correlation analysis techniques have not been explored for End-to-End ASR models.
This paper analyses and explores the internal dynamics between layers during training with CNN, LSTM and Transformer based approaches.
arXiv Detail & Related papers (2022-05-19T10:19:32Z) - Acoustic-Net: A Novel Neural Network for Sound Localization and
Quantification [28.670240455952317]
A novel neural network, termed the Acoustic-Net, is proposed to locate and quantify the sound source simply using the original signals.
The experiments demonstrate that the proposed method significantly improves the accuracy of sound source prediction and the computing speed.
arXiv Detail & Related papers (2022-03-31T12:20:09Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
We present a model based on Neural Architecture Search (NAS) and self-learning for received signal strength ( RSS) map reconstruction.
The approach first finds an optimal NN architecture and simultaneously train the deduced model over some ground-truth measurements of a given ( RSS) map.
Experimental results show that signal predictions of this second model outperforms non-learning based state-of-the-art techniques and NN models with no architecture search.
arXiv Detail & Related papers (2021-05-17T12:19:22Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - The Heterogeneity Hypothesis: Finding Layer-Wise Differentiated Network
Architectures [179.66117325866585]
We investigate a design space that is usually overlooked, i.e. adjusting the channel configurations of predefined networks.
We find that this adjustment can be achieved by shrinking widened baseline networks and leads to superior performance.
Experiments are conducted on various networks and datasets for image classification, visual tracking and image restoration.
arXiv Detail & Related papers (2020-06-29T17:59:26Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z) - Centimeter-Level Indoor Localization using Channel State Information
with Recurrent Neural Networks [12.193558591962754]
This paper proposes the neural network method to estimate the centimeter-level indoor positioning with real CSI data collected from linear antennas.
It utilizes an amplitude of channel response or a correlation matrix as the input, which can highly reduce the data size and suppress the noise.
Also, it makes use of the consistency in the user motion trajectory via Recurrent Neural Network (RNN) and signal-noise ratio (SNR) information, which can further improve the estimation accuracy.
arXiv Detail & Related papers (2020-02-04T17:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.