論文の概要: S&D Messenger: Exchanging Semantic and Domain Knowledge for Generic Semi-Supervised Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2407.07763v1
- Date: Wed, 10 Jul 2024 15:39:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:02:46.528734
- Title: S&D Messenger: Exchanging Semantic and Domain Knowledge for Generic Semi-Supervised Medical Image Segmentation
- Title(参考訳): S&D Messenger:ジェネリック・セミスーパービジョン・メディカルイメージ・セグメンテーションのためのセマンティックとドメイン知識の交換
- Authors: Qixiang Zhang, Haonan Wang, Xiaomeng Li,
- Abstract要約: 半監督型医用画像分割(SSMIS)は,医療分野における手動ラベリングの課題に対処するための,有望な解決策として登場した。
本稿では,3つのタスク全てをマスターする汎用フレームワークを開発することを目的とする。
- 参考スコア(独自算出の注目度): 14.628436886574882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised medical image segmentation (SSMIS) has emerged as a promising solution to tackle the challenges of time-consuming manual labeling in the medical field. However, in practical scenarios, there are often domain variations within the datasets, leading to derivative scenarios like semi-supervised medical domain generalization (Semi-MDG) and unsupervised medical domain adaptation (UMDA). In this paper, we aim to develop a generic framework that masters all three tasks. We notice a critical shared challenge across three scenarios: the explicit semantic knowledge for segmentation performance and rich domain knowledge for generalizability exclusively exist in the labeled set and unlabeled set respectively. Such discrepancy hinders existing methods from effectively comprehending both types of knowledge under semi-supervised settings. To tackle this challenge, we develop a Semantic & Domain Knowledge Messenger (S&D Messenger) which facilitates direct knowledge delivery between the labeled and unlabeled set, and thus allowing the model to comprehend both of them in each individual learning flow. Equipped with our S&D Messenger, a naive pseudo-labeling method can achieve huge improvement on six benchmark datasets for SSMIS (+7.5%), UMDA (+5.6%), and Semi-MDG tasks (+1.14%), compared with state-of-the-art methods designed for specific tasks.
- Abstract(参考訳): 半監督型医用画像分割(SSMIS)は,医療分野における手動ラベリングの課題に対処するための,有望な解決策として登場した。
しかし、現実的なシナリオでは、データセット内にドメインのバリエーションがしばしば存在し、半教師付き医療領域一般化(Semi-MDG)や教師なし医療領域適応(UMDA)のような派生的なシナリオが導かれる。
本稿では,3つのタスク全てをマスターする汎用フレームワークを開発することを目的とする。
セグメンテーションのパフォーマンスに関する明示的なセマンティック知識と、一般化可能性に関する豊富なドメイン知識は、それぞれラベル付き集合とラベルなし集合にのみ存在する。
このような不一致は、半教師付き設定下で両方の知識を効果的に理解することを妨げる。
この課題に対処するため,ラベル付きセットとラベルなしセット間の直接的な知識提供を容易にするセマンティック・アンド・ドメイン・ナレッジ・メッセンジャー(S&D Messenger)を開発した。
SSMIS(+7.5%)、UMDA(+5.6%)、Semi-MDGタスク(+1.14%)の6つのベンチマークデータセットでは、特定のタスク用に設計された最先端のメソッドと比較して、単純な擬似ラベル方式が大幅に改善できる。
関連論文リスト
- LIMIS: Towards Language-based Interactive Medical Image Segmentation [58.553786162527686]
LIMISは、最初の純粋言語に基づく対話型医療画像分割モデルである。
我々は、Grounded SAMを医療領域に適応させ、言語に基づくモデルインタラクション戦略を設計する。
LIMISを3つの公開医療データセット上で,パフォーマンスとユーザビリティの観点から評価した。
論文 参考訳(メタデータ) (2024-10-22T12:13:47Z) - Manifold-Aware Local Feature Modeling for Semi-Supervised Medical Image Segmentation [20.69908466577971]
マニフォールド対応局所特徴モデリングネットワーク (MANet) を導入し, 多様体監視信号を組み込むことでU-Netアーキテクチャを向上する。
ACDC、LA、Pancreas-NIHといったデータセットに関する我々の実験は、MANetがパフォーマンス指標における最先端の手法を一貫して超越していることを示しています。
論文 参考訳(メタデータ) (2024-10-14T08:40:35Z) - The Devil is in the Statistics: Mitigating and Exploiting Statistics Difference for Generalizable Semi-supervised Medical Image Segmentation [36.45117307751509]
この課題に対処するために、半教師付きドメインの一般化が提案されている。
医療機関間のドメインシフトが、異なる特徴統計を引き起こすことを観察する。
この現象は、目に見えない領域の一般化を促進するために利用することができる。
論文 参考訳(メタデータ) (2024-07-16T03:41:48Z) - Multi-Level Global Context Cross Consistency Model for Semi-Supervised
Ultrasound Image Segmentation with Diffusion Model [0.0]
本研究では,Latent Diffusion Model (LDM) によって生成された画像を,半教師付き学習のためのラベル付き画像として利用するフレームワークを提案する。
提案手法により,確率分布の知識をセグメント化ネットワークに効果的に伝達することが可能となり,セグメント化精度が向上する。
論文 参考訳(メタデータ) (2023-05-16T14:08:24Z) - MultiMatch: Multi-task Learning for Semi-supervised Domain Generalization [55.06956781674986]
我々は、各ソースドメインにいくつかのラベル情報がある半教師付きドメイン一般化タスクの解決に頼っている。
我々は、MultiMatchを提案し、FixMatchをマルチタスク学習フレームワークに拡張し、SSDGのための高品質な擬似ラベルを生成する。
提案手法の有効性を検証し,いくつかのベンチマークDGデータセット上で既存の半教師付き手法とSSDG法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-11T14:44:33Z) - One-Shot Medical Landmark Localization by Edge-Guided Transform and
Noisy Landmark Refinement [59.14062241534754]
医用ランドマークのワンショット化のための2段階のフレームワークを提案する。
ステージIでは,新たな損失関数の指導の下で,グローバルアライメントと局所変形のエンドツーエンドのカスケードを学習する。
ステージIIでは,信頼性の高い擬似ラベルを選択するための自己整合性や,半教師付き学習のための相互整合性について検討する。
論文 参考訳(メタデータ) (2022-07-31T15:42:28Z) - ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with
Asymmetric Co-training [34.017031149886556]
非教師なしドメイン適応(UDA)は、ソースとターゲットドメイン間のドメインシフトを軽減するために大いに研究されてきた。
本稿では,ラベル付けされていないターゲットデータに加えて,ラベル付きソースデータとターゲットドメインデータの両方を統一的に活用することを提案する。
本稿では、これらのサブセットを統合し、ソースドメインデータの支配を回避するための、新しい非対称コトレーニング(ACT)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-05T23:48:00Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - mDALU: Multi-Source Domain Adaptation and Label Unification with Partial
Datasets [102.62639692656458]
本稿では,この課題をマルチソースドメイン適応とラベル統一の問題として扱う。
本手法は,部分教師あり適応段階と完全教師あり適応段階からなる。
本手法は,画像分類,2次元意味画像分割,ジョイント2d-3d意味セグメンテーションの3つのタスクで検証する。
論文 参考訳(メタデータ) (2020-12-15T15:58:03Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
ラベルのないデータは、注釈付きデータよりもはるかに簡単に取得できる。
医用画像セグメンテーションのための不確実性を考慮したマルチビュー協調トレーニングを提案する。
我々のフレームワークは、ラベルのないデータを効率的に活用してパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-28T22:04:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。