論文の概要: Manifold-Aware Local Feature Modeling for Semi-Supervised Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2410.10287v1
- Date: Mon, 14 Oct 2024 08:40:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:34:36.409429
- Title: Manifold-Aware Local Feature Modeling for Semi-Supervised Medical Image Segmentation
- Title(参考訳): 半監督型医用画像分割のためのマニフォールド対応局所特徴モデリング
- Authors: Sicheng Shen, Jinming Cao, Yifang Yin, Roger Zimmermann,
- Abstract要約: マニフォールド対応局所特徴モデリングネットワーク (MANet) を導入し, 多様体監視信号を組み込むことでU-Netアーキテクチャを向上する。
ACDC、LA、Pancreas-NIHといったデータセットに関する我々の実験は、MANetがパフォーマンス指標における最先端の手法を一貫して超越していることを示しています。
- 参考スコア(独自算出の注目度): 20.69908466577971
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Achieving precise medical image segmentation is vital for effective treatment planning and accurate disease diagnosis. Traditional fully-supervised deep learning methods, though highly precise, are heavily reliant on large volumes of labeled data, which are often difficult to obtain due to the expertise required for medical annotations. This has led to the rise of semi-supervised learning approaches that utilize both labeled and unlabeled data to mitigate the label scarcity issue. In this paper, we introduce the Manifold-Aware Local Feature Modeling Network (MANet), which enhances the U-Net architecture by incorporating manifold supervision signals. This approach focuses on improving boundary accuracy, which is crucial for reliable medical diagnosis. To further extend the versatility of our method, we propose two variants: MA-Sobel and MA-Canny. The MA-Sobel variant employs the Sobel operator, which is effective for both 2D and 3D data, while the MA-Canny variant utilizes the Canny operator, specifically designed for 2D images, to refine boundary detection. These variants allow our method to adapt to various medical image modalities and dimensionalities, ensuring broader applicability. Our extensive experiments on datasets such as ACDC, LA, and Pancreas-NIH demonstrate that MANet consistently surpasses state-of-the-art methods in performance metrics like Dice and Jaccard scores. The proposed method also shows improved generalization across various semi-supervised segmentation networks, highlighting its robustness and effectiveness. Visual analysis of segmentation results confirms that MANet offers clearer and more accurate class boundaries, underscoring the value of manifold information in medical image segmentation.
- Abstract(参考訳): 正確な医用画像分割は、効果的な治療計画と正確な疾患診断に不可欠である。
従来の完全教師付きディープラーニング手法は非常に正確であるが、大量のラベル付きデータに大きく依存している。
これはラベル付きデータとラベルなしデータの両方を利用してラベル不足を緩和する半教師付き学習アプローチの台頭につながった。
本稿では,マニフォールド対応局所特徴モデリングネットワーク (MANet) について紹介する。
本手法は, 信頼性診断に欠かせない境界精度の向上に焦点をあてる。
本手法の汎用性をさらに拡張するため,MA-Sobel と MA-Canny の2つの変種を提案する。
MA-Sobelは2Dデータと3Dデータの両方に有効であるSobel演算子を使用し、MA-Cannyは2D画像用に特別に設計されたCanny演算子を使用して境界検出を洗練している。
これらの変種により,様々な医用画像のモダリティや次元に適応し,より広い適用性を確保することができる。
ACDC、LA、Pancreas-NIHといったデータセットに関する大規模な実験は、MANetがDiceやJaccardのスコアのようなパフォーマンス指標における最先端のメソッドを一貫して上回っていることを示している。
提案手法は, 半教師付きセグメンテーションネットワーク間の一般化を改良し, その堅牢性と有効性を強調した。
セグメンテーションの結果の視覚的分析により、MANetはより明確で正確なクラス境界を提供し、医用画像セグメンテーションにおける多様体情報の値を示す。
関連論文リスト
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Multi-Level Global Context Cross Consistency Model for Semi-Supervised
Ultrasound Image Segmentation with Diffusion Model [0.0]
本研究では,Latent Diffusion Model (LDM) によって生成された画像を,半教師付き学習のためのラベル付き画像として利用するフレームワークを提案する。
提案手法により,確率分布の知識をセグメント化ネットワークに効果的に伝達することが可能となり,セグメント化精度が向上する。
論文 参考訳(メタデータ) (2023-05-16T14:08:24Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation [8.307551496968156]
医用画像セグメンテーションのための教師なしディープラーニングフレームワークCUTSを提案する。
各画像に対して、画像内コントラスト学習と局所パッチ再構成による埋め込みマップを生成する。
CUTSは、様々な粒度の特徴をハイライトする粗い粒度のセグメンテーションを連続的に生成する。
論文 参考訳(メタデータ) (2022-09-23T01:09:06Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
ラベルのないデータは、注釈付きデータよりもはるかに簡単に取得できる。
医用画像セグメンテーションのための不確実性を考慮したマルチビュー協調トレーニングを提案する。
我々のフレームワークは、ラベルのないデータを効率的に活用してパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-28T22:04:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。