論文の概要: Learning to Simulate Unseen Physical Systems with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2201.11976v1
- Date: Fri, 28 Jan 2022 07:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-31 15:41:09.436196
- Title: Learning to Simulate Unseen Physical Systems with Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークによる未知の物理系シミュレーションの学習
- Authors: Ce Yang, Weihao Gao, Di Wu, Chong Wang
- Abstract要約: グラフベース物理エンジン(Graph-based Physics Engine)は,物理先行パラメータと物質パラメータを組み込んだ機械学習手法である。
我々は、GPEがトレーニングセットにない異なる特性を持つ材料に一般化できることを実証した。
さらに、モデルに運動量保存の法則を導入することにより、学習の効率性と安定性が大幅に向上する。
- 参考スコア(独自算出の注目度): 13.202870928432045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation of the dynamics of physical systems is essential to the
development of both science and engineering. Recently there is an increasing
interest in learning to simulate the dynamics of physical systems using neural
networks. However, existing approaches fail to generalize to physical
substances not in the training set, such as liquids with different viscosities
or elastomers with different elasticities. Here we present a machine learning
method embedded with physical priors and material parameters, which we term as
"Graph-based Physics Engine" (GPE), to efficiently model the physical dynamics
of different substances in a wide variety of scenarios. We demonstrate that GPE
can generalize to materials with different properties not seen in the training
set and perform well from single-step predictions to multi-step roll-out
simulations. In addition, introducing the law of momentum conservation in the
model significantly improves the efficiency and stability of learning, allowing
convergence to better models with fewer training steps.
- Abstract(参考訳): 物理システムのダイナミクスのシミュレーションは、科学と工学の両方の発展に不可欠である。
近年,ニューラルネットワークを用いた物理システムのダイナミクスをシミュレートする学習への関心が高まっている。
しかし、既存のアプローチでは、粘度の異なる液体や弾性の異なるエラストマーなど、トレーニングセットにない物質に一般化することができない。
本稿では,多種多様なシナリオにおいて異なる物質の物理力学を効率的にモデル化するために,物理量と物質パラメータを組み込んだ機械学習手法であるgraph-based physics engine(gpe)を提案する。
GPEはトレーニングセットにない異なる特性を持つ材料に一般化でき、シングルステップ予測からマルチステップロールアウトシミュレーションまでよく機能することを示した。
さらに、モデルに運動量保存の法則を導入することで、学習の効率と安定性が大幅に向上し、トレーニングステップの少ないより良いモデルへの収束が可能になる。
関連論文リスト
- Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics [48.99021224773799]
本稿では,既存の物理法則を学習的補正と統合するニューラルネットワーク (NeuMA) を提案する。
また,粒子駆動型3次元ガウス平滑化モデルであるParticle-GSを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:43:36Z) - AdaptiGraph: Material-Adaptive Graph-Based Neural Dynamics for Robotic Manipulation [30.367498271886866]
本稿では,学習に基づく動的モデリング手法であるAdaptiGraphを紹介する。
ロボットは様々な難易度の高い変形可能な素材を予測し、適応し、制御することができる。
実世界の変形可能な物体の多種多様な集合を含む予測・操作タスクについて,予測精度とタスク習熟度に優れることを示す。
論文 参考訳(メタデータ) (2024-07-10T17:57:04Z) - Physically Consistent Neural ODEs for Learning Multi-Physics Systems [0.0]
本稿では, 可逆ポート・ハミルトニアンシステム (IPHS) の枠組みを利用する。
データからパラメータを学習するために,PC-NODE(Physically Consistent NODE)を提案する。
提案手法の有効性を実世界の実測値から建物熱力学を学習し,その有効性を実証する。
論文 参考訳(メタデータ) (2022-11-11T11:20:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。