Quantum Algorithm to Prepare Quasi-Stationary States
- URL: http://arxiv.org/abs/2407.07893v1
- Date: Wed, 10 Jul 2024 17:59:26 GMT
- Title: Quantum Algorithm to Prepare Quasi-Stationary States
- Authors: Samuel J. Garratt, Soonwon Choi,
- Abstract summary: We present an efficient quantum search algorithm which produces quasi-stationary states in a dense many-body spectrum.
In time scaling with system size, the algorithm produces states with inverse energy, which can be used to analyze many-body dynamics out to times.
We discuss how this algorithm can be used as a primitive to investigate the mechanisms underlying thermalization transformations and hydrodynamics in many-body quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum dynamics can be analyzed via the structure of energy eigenstates. However, in the many-body setting, preparing eigenstates associated with finite temperatures requires time scaling exponentially with system size. In this work we present an efficient quantum search algorithm which produces quasi-stationary states, having energies supported within narrow windows of a dense many-body spectrum. In time scaling polynomially with system size, the algorithm produces states with inverse polynomial energy width, which can in turn be used to analyze many-body dynamics out to polynomial times. The algorithm is based on quantum singular value transformations and quantum signal processing, and provides a quadratic speedup over measurement-based approaches. We discuss how this algorithm can be used as a primitive to investigate the mechanisms underlying thermalization and hydrodynamics in many-body quantum systems.
Related papers
- Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Time Evolution of Uniform Sequential Circuits [0.16385815610837165]
We present a hybrid quantum-classical scaling algorithm for time evolving a one-dimensional uniform system in the thermodynamic limit.
We show numerically that this anatzs requires a number of parameters in the simulation time for a given accuracy.
All steps of the hybrid optimization are designed with near-term digital quantum computers in mind.
arXiv Detail & Related papers (2022-10-07T18:00:01Z) - Fast-forwarding quantum simulation with real-time quantum Krylov
subspace algorithms [0.0]
We propose several quantum Krylov fast-forwarding (QKFF) algorithms capable of predicting long-time dynamics well beyond the coherence time of current quantum hardware.
Our algorithms use real-time evolved Krylov basis states prepared on the quantum computer and a multi-reference subspace method to ensure convergence towards high-fidelity, long-time dynamics.
arXiv Detail & Related papers (2022-08-01T16:00:20Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Computation of Finite-Temperature Static and Dynamical
Properties of Spin Systems Using Quantum Imaginary Time Evolution [0.0]
We develop scalable quantum algorithms to study finite-temperature physics of quantum many-body systems.
Our work demonstrates that the ansatz-independent QITE algorithm is capable of computing diverse finite-temperature observables on near-term quantum devices.
arXiv Detail & Related papers (2020-09-08T06:49:08Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.