論文の概要: Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach
- arxiv url: http://arxiv.org/abs/2407.07918v1
- Date: Sun, 7 Jul 2024 12:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:58:43.556857
- Title: Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach
- Title(参考訳): 新しい難読化マルウェアの検出:軽量で解釈可能な機械学習アプローチ
- Authors: Oladipo A. Madamidola, Felix Ngobigha, Adnane Ez-zizi,
- Abstract要約: 本稿では,高度に正確で軽量で解釈可能な,難読化マルウェアを検出する機械学習システムを提案する。
本システムでは,1つのマルウェアサブタイプ,すなわちSpywareファミリーのTransponderでのみ訓練されているにもかかわらず,15種類のマルウェアサブタイプを検出することができる。
トランスポンダー中心のモデルは99.8%を超え、平均処理速度はファイルあたり5.7マイクロ秒であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has been successfully applied in developing malware detection systems, with a primary focus on accuracy, and increasing attention to reducing computational overhead and improving model interpretability. However, an important question remains underexplored: How well can machine learning-based models detect entirely new forms of malware not present in the training data? In this study, we present a machine learning-based system for detecting obfuscated malware that is not only highly accurate, lightweight and interpretable, but also capable of successfully adapting to new types of malware attacks. Our system is capable of detecting 15 malware subtypes despite being exclusively trained on one malware subtype, namely the Transponder from the Spyware family. This system was built after training 15 distinct random forest-based models, each on a different malware subtype from the CIC-MalMem-2022 dataset. These models were evaluated against the entire range of malware subtypes, including all unseen malware subtypes. To maintain the system's streamlined nature, training was confined to the top five most important features, which also enhanced interpretability. The Transponder-focused model exhibited high accuracy, exceeding 99.8%, with an average processing speed of 5.7 microseconds per file. We also illustrate how the Shapley additive explanations technique can facilitate the interpretation of the model predictions. Our research contributes to advancing malware detection methodologies, pioneering the feasibility of detecting obfuscated malware by exclusively training a model on a single or a few carefully selected malware subtypes and applying it to detect unseen subtypes.
- Abstract(参考訳): 機械学習はマルウェア検出システムの開発に成功し、精度を重視し、計算オーバーヘッドの低減とモデルの解釈可能性の向上に注意を向けている。
機械学習ベースのモデルは、トレーニングデータに存在しない全く新しい種類のマルウェアをどの程度検出できるか?
本研究では、高度に正確で、軽量で、解釈可能なだけでなく、新たなタイプのマルウェア攻撃に適応できる、難読化マルウェアを検出する機械学習ベースのシステムを提案する。
本システムでは,1つのマルウェアサブタイプ,すなわちSpywareファミリーのTransponderでのみ訓練されているにもかかわらず,15種類のマルウェアサブタイプを検出することができる。
このシステムは、CIC-MalMem-2022データセットとは異なるマルウェアサブタイプで、15の異なるランダムな森林ベースのモデルをトレーニングした後に開発された。
これらのモデルは、未確認のマルウェアサブタイプを含む全種類のマルウェアサブタイプに対して評価された。
システムの合理化された性質を維持するため、トレーニングは最も重要な5つの特徴に制限され、解釈可能性も向上した。
トランスポンダー中心のモデルは99.8%を超え、平均処理速度はファイルあたり5.7マイクロ秒であった。
また,Shapley加法によりモデル予測の解釈が容易になることを示す。
本研究は,単一または少数の慎重に選択されたマルウェアサブタイプに対してのみモデルをトレーニングし,未確認のサブタイプを検出することによって,難読化マルウェア検出の可能性を開拓し,マルウェア検出手法の進歩に寄与する。
関連論文リスト
- Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy [65.80757820884476]
未学習システムのデプロイにおいて、重要で未調査の脆弱性を公開しています。
本稿では,訓練セットに存在しないデータに対して,逆学習要求を送信することにより,攻撃者がモデル精度を劣化させることができる脅威モデルを提案する。
我々は、未学習要求の正当性を検出するための様々な検証メカニズムを評価し、検証の課題を明らかにする。
論文 参考訳(メタデータ) (2024-10-12T16:47:04Z) - MalMixer: Few-Shot Malware Classification with Retrieval-Augmented Semi-Supervised Learning [10.366927745010006]
MalMixerは、スパーストレーニングデータを用いて精度の高い半教師付きマルウェアファミリー分類器である。
そこで,MalMixerは,数ショットのマルウェアファミリー分類設定において,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-20T04:50:49Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
本稿では、視覚変換器(ViT)アーキテクチャに基づくマルウェア検出のための自己超越型ディープラーニングモデルであるSHERLOCKを提案する。
提案手法は, マクロF1スコアが.497, 491で, マルチクラスマルウェア分類における最先端技術よりも優れている。
論文 参考訳(メタデータ) (2022-08-15T07:49:58Z) - Task-Aware Meta Learning-based Siamese Neural Network for Classifying
Obfuscated Malware [5.293553970082943]
既存のマルウェア検出方法は、トレーニングデータセットに難読化されたマルウェアサンプルが存在する場合、異なるマルウェアファミリーを正しく分類できない。
そこで我々は,このような制御フロー難読化技術に対して耐性を持つ,タスク対応の複数ショット学習型サイメスニューラルネットワークを提案する。
提案手法は,同一のマルウェアファミリーに属するマルウェアサンプルを正しく分類し,ユニークなマルウェアシグネチャの認識に極めて有効である。
論文 参考訳(メタデータ) (2021-10-26T04:44:13Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
ディープラーニングモデルは、トロイの木馬攻撃に対して脆弱で、攻撃者はトレーニング中にバックドアをインストールして、結果のモデルが小さなトリガーパッチで汚染されたサンプルを誤識別させる。
本稿では,ラベル数と計算複雑性が一致しない新たなトリガリバースエンジニアリング手法を提案する。
実験では,提案手法が純モデルからトロイの木馬モデルを分離する際の完全なスコアを達成できることが観察された。
論文 参考訳(メタデータ) (2020-06-10T04:12:53Z) - Exploring Optimal Deep Learning Models for Image-based Malware Variant
Classification [3.8073142980733]
本研究では,深層学習モデルの違いがマルウェアの分類精度に与える影響について検討した。
その結果,最新のディープラーニングモデルの1つを比較的低い転送度で微調整することで,最も高い分類精度が得られることがわかった。
論文 参考訳(メタデータ) (2020-04-10T23:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。