論文の概要: Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images
- arxiv url: http://arxiv.org/abs/2407.08020v1
- Date: Wed, 10 Jul 2024 19:58:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 21:39:04.176766
- Title: Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images
- Title(参考訳): 3次元超音波画像からのプラセンタセグメンテーションの対話的セグメンテーションモデル
- Authors: Hao Li, Baris Oguz, Gabriel Arenas, Xing Yao, Jiacheng Wang, Alison Pouch, Brett Byram, Nadav Schwartz, Ipek Oguz,
- Abstract要約: 3次元超音波画像からの胎盤体積測定は妊娠の予後を予測するのに重要である。
胎盤セグメンテーションタスクに対する人間-イン-ループアプローチとは対照的に,公開可能な3次元インタラクティブセグメンテーションモデルの評価を行った。
- 参考スコア(独自算出の注目度): 6.249772260759159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Placenta volume measurement from 3D ultrasound images is critical for predicting pregnancy outcomes, and manual annotation is the gold standard. However, such manual annotation is expensive and time-consuming. Automated segmentation algorithms can often successfully segment the placenta, but these methods may not consistently produce robust segmentations suitable for practical use. Recently, inspired by the Segment Anything Model (SAM), deep learning-based interactive segmentation models have been widely applied in the medical imaging domain. These models produce a segmentation from visual prompts provided to indicate the target region, which may offer a feasible solution for practical use. However, none of these models are specifically designed for interactively segmenting 3D ultrasound images, which remain challenging due to the inherent noise of this modality. In this paper, we evaluate publicly available state-of-the-art 3D interactive segmentation models in contrast to a human-in-the-loop approach for the placenta segmentation task. The Dice score, normalized surface Dice, averaged symmetric surface distance, and 95-percent Hausdorff distance are used as evaluation metrics. We consider a Dice score of 0.95 a successful segmentation. Our results indicate that the human-in-the-loop segmentation model reaches this standard. Moreover, we assess the efficiency of the human-in-the-loop model as a function of the amount of prompts. Our results demonstrate that the human-in-the-loop model is both effective and efficient for interactive placenta segmentation. The code is available at \url{https://github.com/MedICL-VU/PRISM-placenta}.
- Abstract(参考訳): 3次元超音波画像からの胎盤容積測定は妊娠の予後を予測する上で重要であり,手動アノテーションは金標準である。
しかし、このような手作業による注釈は高価で時間を要する。
自動セグメンテーションアルゴリズムはしばしば胎盤のセグメンテーションを成功させるが、これらの手法は実用に適したロバストセグメンテーションを一貫して生成するわけではない。
近年,Segment Anything Model (SAM) に触発されて,深層学習に基づく対話型セグメンテーションモデルが医療画像領域に広く応用されている。
これらのモデルは、対象領域を示すために提供される視覚的プロンプトからセグメンテーションを生成する。
しかし、これらのモデルはいずれも3次元超音波画像の対話的セグメンテーションのために特別に設計されたものではない。
本稿では,Placentaセグメンテーションタスクに対する人間-the-loopアプローチとは対照的に,最先端の3Dインタラクティブセグメンテーションモデルの評価を行う。
評価指標として、Diceスコア、正規化表面Dice、平均対称表面距離、および95%のハウスドルフ距離が用いられる。
我々はDiceスコア0.95を成功セグメンテーションとみなす。
以上の結果から, 人間のループ分割モデルがこの標準に達していることが示唆された。
さらに,人間のループモデルの有効性を,プロンプトの量の関数として評価する。
本研究は, 対話型胎盤セグメンテーションにおいて, ループモデルの有効性と効率性を示すものである。
コードは \url{https://github.com/MedICL-VU/PRISM-placenta} で公開されている。
関連論文リスト
- PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound [6.249772260759159]
3次元超音波(3DUS)画像から測定した胎盤体積は成長軌跡を追跡する重要なツールであり、妊娠の結果と関連している。
手動セグメンテーションは金の標準であるが、時間がかかり主観的である。
本稿では,3DUS画像から胎盤をリアルタイムでインタラクティブに分割するための,臨床利用を目的とした軽量なインタラクティブセグメンテーションモデルを提案する。
論文 参考訳(メタデータ) (2024-08-09T22:49:19Z) - Augmented Efficiency: Reducing Memory Footprint and Accelerating Inference for 3D Semantic Segmentation through Hybrid Vision [9.96433151449016]
本稿では,2次元と3次元のコンピュータビジョン技術を組み合わせた3次元セマンティックセグメンテーションの新たなアプローチを提案する。
我々は3次元点雲にリンクしたRGB画像に対して2Dセマンティックセマンティックセマンティックセマンティクスを行い、その結果をクラスラベルの押出手法を用いて3Dに拡張する。
このモデルは、KITTI-360データセット上の最先端の3Dセマンティックセマンティックセグメンテーションモデルとして機能する。
論文 参考訳(メタデータ) (2024-07-23T00:04:10Z) - Memorize What Matters: Emergent Scene Decomposition from Multitraverse [54.487589469432706]
3次元ガウス写像は3次元ガウス写像をベースとしたカメラのみのオフラインマッピングフレームワークである。
3DGMは、同じ領域から複数のRGBビデオをガウスベースの環境マップに変換し、同時に2D短命なオブジェクトセグメンテーションを実行する。
We build the Mapverse benchmark, sourced from the Ithaca365 and nuPlan datasets, to evaluate our method in unsupervised 2D segmentation, 3D reconstruction, and Neural rendering。
論文 参考訳(メタデータ) (2024-05-27T14:11:17Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - CGAM: Click-Guided Attention Module for Interactive Pathology Image
Segmentation via Backpropagating Refinement [8.590026259176806]
腫瘍領域のセグメンテーションは、デジタル病理の定量的解析に欠かせない課題である。
最近のディープニューラルネットワークは、様々な画像分割タスクで最先端のパフォーマンスを示している。
本稿では,クリック型ユーザインタラクションによるディープニューラルネットワークの出力を改良する対話的セグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2023-07-03T13:45:24Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
超音波を用いた新しいカテーテルセグメンテーション法を提案する。
提案手法は,1ボリュームあたり0.25秒の効率で最先端の性能を実現した。
論文 参考訳(メタデータ) (2020-10-19T13:56:22Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。